698 resultados para ecosystem engineering
Resumo:
Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a trans-disciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analysing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward towards the inclusion of the cultural dimension in European wide assessments can be made.
Resumo:
Modification of graphene to open a robust gap in its electronic spectrum is essential for its use in field effect transistors and photochemistry applications. Inspired by recent experimental success in the preparation of homogeneous alloys of graphene and boron nitride (BN), we consider here engineering the electronic structure and bandgap of C2xB1−xN1−x alloys via both compositional and configurational modification. We start from the BN end-member, which already has a large bandgap, and then show that (a) the bandgap can in principle be reduced to about 2 eV with moderate substitution of C (x < 0.25); and (b) the electronic structure of C2xB1−xN1−x can be further tuned not only with composition x, but also with the configuration adopted by C substituents in the BN matrix. Our analysis, based on accurate screened hybrid functional calculations, provides a clear understanding of the correlation found between the bandgap and the level of aggregation of C atoms: the bandgap decreases most when the C atoms are maximally isolated, and increases with aggregation of C atoms due to the formation of bonding and anti-bonding bands associated with hybridization of occupied and empty defect states. We determine the location of valence and conduction band edges relative to vacuum and discuss the implications on the potential use of 2D C2xB1−xN1−x alloys in photocatalytic applications. Finally, we assess the thermodynamic limitations on the formation of these alloys using a cluster expansion model derived from first-principles.
Resumo:
In visual tracking experiments, distributions of the relative phase be-tween target and tracer showed positive relative phase indicating that the tracer precedes the target position. We found a mode transition from the reactive to anticipatory mode. The proposed integrated model provides a framework to understand the antici-patory behaviour of human, focusing on the integration of visual and soma-tosensory information. The time delays in visual processing and somatosensory feedback are explicitly treated in the simultaneous differential equations. The anticipatory behaviour observed in the visual tracking experiments can be ex-plained by the feedforward term of target velocity, internal dynamics, and time delay in somatosensory feedback.
Resumo:
We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.
Resumo:
Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.
Soil conditioning and plant-soil feedbacks in a modified forest ecosystem are soil-context dependent
Resumo:
Aims There is potential for altered plant-soil feedback (PSF) to develop in human-modified ecosystems but empirical data to test this idea are limited. Here, we compared the PSF operating in jarrah forest soil restored after bauxite mining in Western Australia with that operating in unmined soil. Methods Native seedlings of jarrah (Eucalyptus marginata), acacia (Acacia pulchella), and bossiaea (Bossiaea ornata) were grown in unmined and restored soils to measure conditioning of chemical and biological properties as compared with unplanted control soils. Subsequently, acacia and bossiaea were grown in soils conditioned by their own or by jarrah seedlings to determine the net PSF. Results In unmined soil, the three plant species conditioned the chemical properties but had little effect on the biological properties. In comparison, jarrah and bossiaea conditioned different properties of restored soil while acacia did not condition this soil. In unmined soil, neutral PSF was observed, whereas in restored soil, negative PSF was associated with acacia and bossiaea. Conclusions Soil conditioning was influenced by soil context and plant species. The net PSF was influenced by soil context, not by plant species and it was different in restored and unmined soils. The results have practical implications for ecosystem restoration after human activities.
Resumo:
The UK government is mandating the use of building information modelling (BIM) in large public projects by 2016. As a result, engineering firms are faced with challenges related to embedding new technologies and associated working practices for the digital delivery of major infrastructure projects. Diffusion of innovations theory is used to investigate how digital innovations diffuse across complex firms. A contextualist approach is employed through an in-depth case study of a large, international engineering project-based firm. The analysis of the empirical data, which was collected over a four-year period of close interaction with the firm, reveals parallel paths of diffusion occurring across the firm, where both the innovation and the firm context were continually changing. The diffusion process is traced over three phases: centralization of technology management, standardization of digital working practices, and globalization of digital resources. The findings describe the diffusion of a digital innovation as multiple and partial within a complex social system during times of change and organizational uncertainty, thereby contributing to diffusion of innovations studies in construction by showing a range of activities and dynamics of a non-linear diffusion process.
Resumo:
Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.
Resumo:
Payments for ecosystem services (PES) typically reward landowners for managing their land to provide ecosystem services that would not otherwise be provided. REDD—Reduced Emissions from Deforestation and Forest Degradation—is a form of PES aimed at decreasing carbon emissions from forest conversion and extraction in lower-income countries. A key challenge for REDD occurs when it is implemented at the community rather than the individual landowner level. Whilst achieving this community-level reduction relies on individuals changing their interaction with the forest, incentives are not aligned explicitly at the individual level. Rather, payments are made to the community as a single entity in exchange for verified reduced forest loss, as per a PES scheme. In this paper, we explore how community level REDD has been implemented in one multiple-village pilot in Tanzania. Our findings suggest that considerable attention has been paid to monitoring, reporting, verification, and equity. Though no explicit mechanism ensures individual compliance with the group PES, the development of village level institutions, “social fencing,” and a shared future through equal REDD payments factor into community decisions that influence the level of community compliance that the program will eventually achieve. However, few villages allocate funds for explicit enforcement efforts to protect the forest from illegal activities undertaken by outsiders.