834 resultados para distributed heating
Resumo:
The ability to make scientific findings reproducible is increasingly important in areas where substantive results are the product of complex statistical computations. Reproducibility can allow others to verify the published findings and conduct alternate analyses of the same data. A question that arises naturally is how can one conduct and distribute reproducible research? This question is relevant from the point of view of both the authors who want to make their research reproducible and readers who want to reproduce relevant findings reported in the scientific literature. We present a framework in which reproducible research can be conducted and distributed via cached computations and describe specific tools for both authors and readers. As a prototype implementation we introduce three software packages written in the R language. The cacheSweave and stashR packages together provide tools for caching computational results in a key-value style database which can be published to a public repository for readers to download. The SRPM package provides tools for generating and interacting with "shared reproducibility packages" (SRPs) which can facilitate the distribution of the data and code. As a case study we demonstrate the use of the toolkit on a national study of air pollution exposure and mortality.
Resumo:
In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP associated with short-term exposure to summer ozone. At the second stage, we specify a class of distributions for the true city-specific relative rates to estimate an overall effect by taking into account the variability within and across cities. We perform the calculations with respect to several random effects distributions (normal, t-student, and mixture of normal), thus relaxing the common assumption of a two-stage normal-normal hierarchical model. We assess the sensitivity of the results to: 1) lag structure for ozone exposure; 2) degree of adjustment for long-term trends; 3) inclusion of other pollutants in the model;4) heat waves; 5) random effects distributions; and 6) prior hyperparameters. On average across cities, we found that a 10ppb increase in summer ozone level for every day in the previous week is associated with 1.25 percent increase in CVDRESP mortality (95% posterior regions: 0.47, 2.03). The relative rate estimates are also positive and statistically significant at lags 0, 1, and 2. We found that associations between summer ozone and CVDRESP mortality are sensitive to the confounding adjustment for PM_10, but are robust to: 1) the adjustment for long-term trends, other gaseous pollutants (NO_2, SO_2, and CO); 2) the distributional assumptions at the second stage of the hierarchical model; and 3) the prior distributions on all unknown parameters. Bayesian hierarchical distributed lag models and their application to the NMMAPS data allow us estimation of an acute health effect associated with exposure to ambient air pollution in the last few days on average across several locations. The application of these methods and the systematic assessment of the sensitivity of findings to model assumptions provide important epidemiological evidence for future air quality regulations.
Resumo:
Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.
Resumo:
Differential cyp19 aromatase expression during development leads to sexual dimorphisms in the mammalian brain. Whether this is also true for fish is unknown. The aim of the current study has been to follow the expression of the brain-specific aromatase cyp19a2 in the brains of sexually differentiating zebrafish. To assess the role of cyp19a2 in the zebrafish brain during gonadal differentiation, we used quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry to detect differences in the transcript or protein levels and/or expression pattern in juvenile fish, histology to monitor the gonadal status, and double immunofluorescence with neuronal or radial glial markers to characterize aromatase-positive cells. Our data show that cyp19a2 expression levels during zebrafish sexual differentiation cannot be assigned to a particular sex; the expression pattern in the brain is similar in both sexes and aromatase-positive cells appear to be mostly of radial glial nature.
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.
Resumo:
The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.
Resumo:
Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite, which is a typical magnetic dielectric, was simulated by using an explicit finite-difference approach. It is demonstrated that the heat generation due to microwave irradiation dominates the initial temperature rise in the heating and the heat radiation heavily affects the temperature distribution, giving rise to a hot spot in the predicted temperature profile. Microwave heating at 915 MHz exhibits better heating homogeneity than that at 2450 MHz due to larger microwave penetration depth. To minimize/avoid temperature nonuniformity during microwave heating the optimization of object dimension should be considered. The calculated reflection loss over the temperature range of heating is found to be useful for obtaining a rapid optimization of absorber dimension, which increases microwave absorption and achieves relatively uniform heating. To further improve the heating effectiveness, a function for evaluating absorber impedance matching in microwave heating was proposed. It is found that the maximum absorption is associated with perfect impedance matching, which can be achieved by either selecting a reasonable sample dimension or modifying the microwave parameters of the sample.
Resumo:
During the past decades, tremendous research interests have been attracted to investigate nanoparticles due to their promising catalytic, magnetic, and optical properties. In this thesis, two novel methods of nanoparticle fabrication were introduced and the basic formation mechanisms were studied. Metal nanoparticles and polyurethane nanoparticles were separately fabricated by a short-distance sputter deposition technique and a reactive ion etching process. First, a sputter deposition method with a very short target-substrate distance is found to be able to generate metal nanoparticles on the glass substrate inside a RIE chamber. The distribution and morphology of nanoparticles are affected by the distance, the ion concentration and the process time. Densely-distributed nanoparticles of various compositions are deposited on the substrate surface when the target-substrate distance is smaller than 130mm. It is much less than the atoms’ mean free path, which is the threshold in previous research for nanoparticles’ formation. Island structures are formed when the distance is increased to 510mm, indicating the tendency to form continuous thin film. The trend is different from previously-reported sputtering method for nanoparticle fabrication, where longer distance between the target and the substrate facilitates the formation of nanoparticle. A mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results. Secondly, in polyurethane nanoparticles’ fabrication, a mechanism is put forward based on the microphase separation phenomenon in block copolymer thin film. The synthesized polymers have formed dispersed and continuous phases because of the different properties between segments. With harder mechanical property, the dispersed phase is remained after RIE process while the continuous phase is etched away, leading to the formation of nanoparticles on the substrate. The nanoparticles distribution is found to be affected by the heating effect, the process time and the plasma power. Superhydrophilic property is found on samples with these two types of nanoparticles. The relationship between the nanostructure and the hydrophilicity is studied for further potential applications.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.