898 resultados para detection systems
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Structural Health Monitoring (SHM) has diverse potential applications, and many groups work in the development of tools and techniques for monitoring structural performance. These systems use arrays of sensors and can be integrated with remote or local computers. There are several different approaches that can be used to obtain information about the existence, location and extension of faults by non destructive tests. In this paper an experimental technique is proposed for damage location based on an observability grammian matrix. The dynamic properties of the structure are identified through experimental data using the eigensystem realization algorithm (ERA). Experimental tests were carried out in a structure through varying the mass of some elements. Output signals were obtained using accelerometers.
Resumo:
This work studies the capability of generalization of Neural Network using vibration based measurement data aiming at operating condition and health monitoring of mechanical systems. The procedure uses the backpropagation algorithm to classify the input patters of a system with different stiffness ratios. It has been investigated a large set of input data, containing various stiffness ratios as well as a reduced set containing only the extreme ones in order to study generalizing capability of the network. This allows to definition of Neural Networks capable to use a reduced set of data during the training phase. Once it is successfully trained, it could identify intermediate failure condition. Several conditions and intensities of damages have been studied by using numerical data. The Neural Network demonstrated a good capacity of generalization for all case. Finally, the proposal was tested with experimental data.
Resumo:
The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sarcoidosis is a rare equine skin disease characterized primarily by an exfoliative and granulomatous dermatitis but also presenting granulomatous inflammation of multiple systems. The current report presents the clinical and histopathological findings of sarcoidosis in a 16-year-old American Quarter Horse gelding with nested polymerase chain reaction Mycobacterium spp. DNA detection within hepatic and skin samples. Mycobacterium spp. may play a role in the pathogenesis of equine sarcoidosis as has been proposed for human sarcoidosis.
Resumo:
Objectives:The aim of this in vitro study was to assess the inter- and intra-examiner reproducibility and the accuracy of the International Caries Detection and Assessment System-II (ICDAS-II) in detecting occlusal caries.Methods:One hundred and sixty-three molars were independently assessed twice by two experienced dentists using the 0- to 6-graded ICDAS-II. The teeth were histologically prepared and classified using two different histological systems [Ekstrand et al. (1997) Caries Research vol. 31, pp. 224-231; Lussi et al. (1999) Caries Research vol. 33, pp. 261-266] and assessed for caries extension. Sensitivity, specificity, accuracy and area under the ROC curve (A(z)) were obtained at D(2) and D(3) thresholds. Unweighted kappa coefficient was used to assess inter- and intra-examiner reproducibility.Results:For the Ekstrand et al. histological classification the sensitivity was 0.99 and 1.00, specificity 1.00 and 0.69 and accuracy 0.99 and 0.76 at D(2) and D(3), respectively. For the Lussi et al. histological classification the sensitivity was 0.91 and 0.75, specificity 0.47 and 0.62 and accuracy 0.86 and 0.68 at D(2) and D(3), respectively. The A(z) varied from 0.54 to 0.73. The inter- and intra-examiner kappa values were 0.51 and 0.58, respectively.Conclusions:ICDAS-II presented good reproducibility and accuracy in detecting occlusal caries, especially caries lesions in the outer half of the enamel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)