852 resultados para cooperative language learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article offers a review of the literature on interprofessional education (EIP), a form of education which brings together members of two or more professions in a joint training. In this course, participants gain knowledge through other professionals and about them. The goal of EIP is to improve collaboration between health professionals and the quality of patient care. The EIP is booming worldwide and seems for from a mere fad. This expansion can be explained by several factors: the increasing importance attributed to the quality of care and patient safety, care changes (aging population and increasing chronic diseases) and the shortage of health professionals. The expectations of the EIP are large, while the evidence supporting its effectiveness is being built.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este artículo es presentar el proyecto EcoSPORTech, cuya finalidad es la creación de una empresa social con jóvenes para la realización de actividades deportivas/ocio en el medio natural, integrando las nuevas tecnologías. Este proyecto supone una colaboración interdisciplinaria dentro de la Universidad de Vic, entre las facultades de Empresa y Comunicación (FEC), la de Ciencias de la Salud y el Bienestar (FCSB) y la de Educación (FE) e integra un equipo de profesionales procedentes de los ámbitos de la empresa, el marketing, el periodismo, el deporte y la terapia ocupacional. Estos profesores formarán al grupo de jóvenes con los que se creará la empresa y dirigirán la misma. Esta empresa (cooperativa) se integra en el vivero de empresas sociales que se está creando en la Universidad de Vic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How communication systems emerge and remain stable is an important question in both cognitive science and evolutionary biology. For communication to arise, not only must individuals cooperate by signaling reliable information, but they must also coordinate and perpetuate signals. Most studies on the emergence of communication in humans typically consider scenarios where individuals implicitly share the same interests. Likewise, most studies on human cooperation consider scenarios where shared conventions of signals and meanings cannot be developed de novo. Here, we combined both approaches with an economic experiment where participants could develop a common language, but under different conditions fostering or hindering cooperation. Participants endeavored to acquire a resource through a learning task in a computer-based environment. After this task, participants had the option to transmit a signal (a color) to a fellow group member, who would subsequently play the same learning task. We varied the way participants competed with each other (either global scale or local scale) and the cost of transmitting a signal (either costly or noncostly) and tracked the way in which signals were used as communication among players. Under global competition, players signaled more often and more consistently, scored higher individual payoffs, and established shared associations of signals and meanings. In addition, costly signals were also more likely to be used under global competition; whereas under local competition, fewer signals were sent and no effective communication system was developed. Our results demonstrate that communication involves both a coordination and a cooperative dilemma and show the importance of studying language evolution under different conditions influencing human cooperation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning objects have been the promise of providing people with high quality learning resources. Initiatives such as MIT Open-CourseWare, MERLOT and others have shown the real possibilities of creating and sharing knowledge through Internet. Thousands of educational resources are available through learning object repositories. We indeed live in an age of content abundance, and content can be considered as infrastructure for building adaptive and personalized learning paths, promoting both formal and informal learning. Nevertheless, although most educational institutions are adopting a more open approach, publishing huge amounts of educational resources, the reality is that these resources are barely used in other educational contexts. This paradox can be partly explained by the dificulties in adapting such resources with respect to language, e-learning standards and specifications and, finally, granularity. Furthermore, if we want our learners to use and take advantage of learning object repositories, we need to provide them with additional services than just browsing and searching for resources. Social networks can be a first step towards creating an open social community of learning around a topic or a subject. In this paper we discuss and analyze the process of using a learning object repository and building a social network on the top of it, with respect to the information architecture needed to capture and store the interaction between learners and resources in form of learning object metadata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämä kandidaatintyö tutkii tietotekniikan perusopetuksessa keskeisen aiheen,ohjelmoinnin, alkeisopetusta ja siihen liittyviä ongelmia. Työssä perehdytään ohjelmoinnin perusopetusmenetelmiin ja opetuksen lähestymistapoihin, sekä ratkaisuihin, joilla opetusta voidaan tehostaa. Näitä ratkaisuja työssä ovat mm. ohjelmointikielen valinta, käytettävän kehitysympäristön löytäminen sekä kurssia tukevien opetusapuvälineiden etsiminen. Lisäksi kurssin läpivientiin liittyvien toimintojen, kuten harjoitusten ja mahdollisten viikkotehtävien valinta kuuluu osaksitätä työtä. Työ itsessään lähestyy aihetta tutkimalla Pythonin soveltuvuutta ohjelmoinnin alkeisopetukseen mm. vertailemalla sitä muihin olemassa oleviin yleisiin opetuskieliin, kuten C, C++ tai Java. Se tarkastelee kielen hyviä ja huonoja puolia, sekä tutkii, voidaanko Pythonia hyödyntää luontevasti pääasiallisena opetuskielenä. Lisäksi työ perehtyy siihen, mitä kaikkea kurssilla tulisi opettaa, sekä siihen, kuinka kurssin läpivienti olisi tehokkainta toteuttaa ja minkälaiset tekniset puitteet kurssin toteuttamista varten olisi järkevää valita.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Faculty of Business and Communication recently started an internationalization process that, in two year’s time, will allow all undergraduate students (studying Journalism, Audiovisual Communication, Advertising and Public Relations, Business and Marketing) to take 25% of their subjects in English using CLIL methodology. Currently, Journalism is the degree course with the greatest percentage of CLIL subjects, for example Current Affairs Workshop, a subject dedicated to analyzing current news using opinion genres. Moreover, because of the lack of other subjects offered in English, ERASMUS students have to take some journalism subjects in order to complete their international passport, and one of the classes they choose is the Current Affairs Workshop. The aim of this paper is to explore how CLIL methodology can be useful for learning journalistic opinion genres (chat-shows, discussions and debates) in a subject where Catalan Communication students –with different levels of English- share their knowledge with European students of other social disciplines. Students work in multidisciplinary groups in which they develop real radio and TV programs, adopting all the roles (moderator, technician, producer and participants), analyzing daily newspapers and other sources to create content, based on current affairs. This paper is based on the participant observation of the lecturers of the subject, who have designed different activities related to journalistic genres, where students can develop their skills according to the role they play in every assignment. Examples of successful lessons will be given, in addition to the results of the course: both positive and negative. Although the objective of the course is to examine professional routines related to opinion genres, and students are not directly graded on their level of English, the Catalan students come to appreciate how they finally overcome their fear of working in a foreign language. This is a basic result of their experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent standardization efforts in e-learning technology have resulted in a number of specifications, however, the automation process that is considered essential in a learning management system (LMS) is a lessexplored one. As learning technology becomes more widespread and more heterogeneous, there is a growing need to specify processes that cross the boundaries of a single LMS or learning resource repository. This article proposes to obtain a specification orientated to automation that takes on board the heterogeneity of systems and formats and provides a language for specifying complex and generic interactions. Having this goal in mind, a technique based on three steps is suggested. The semantic conformance profiles, the business process management (BPM) diagram, and its translation into the business process execution language (BPEL) seem to be suitable for achieving it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the transformation of practical teaching in a Catalan school, connected to the design, implementation and development of project-based learning, and focusing on dialogic learning to investigate its limits and possibilities. Qualitative and design-based research (DBR) methods are applied. These methods are based on empirical educational research with the theory-driven of learning environments. DBR is proposed and applied using practical guidance for the teachers of the school. It can be associated with the current proposals for Embedding Social Sciences and Humanities in the Horizon 2020 Societal Challenges. This position statement defends the social sciences and the humanities as the most fundamental and important ideas to face all societal challenges. The results of this study show that before the training process, teachers apply dialogic learning in specific moments (for example, when they speak about the weekend); however, during the process and after the process, they work systematically with dialogic learning through the PEPT: they start and finish every activity with a individual and group reflection about their own processes, favouring motivation, reasoning and the implication of all the participants. These results prove that progressive transformations of teaching practice benefit cooperative work in class

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Across Latin America 420 indigenous languages are spoken. Spanish is considered a second language in indigenous communities and is progressively introduced in education. However, most of the tools to support teaching processes of a second language have been developed for the most common languages such as English, French, German, Italian, etc. As a result, only a small amount of learning objects and authoring tools have been developed for indigenous people considering the specific needs of their population. This paper introduces Multilingual–Tiny as a web authoring tool to support the virtual experience of indigenous students and teachers when they are creating learning objects in indigenous languages or in Spanish language, in particular, when they have to deal with the grammatical structures of Spanish. Multilingual–Tiny has a module based on the Case-based Reasoning technique to provide recommendations in real time when teachers and students write texts in Spanish. An experiment was performed in order to compare some local similarity functions to retrieve cases from the case library taking into account the grammatical structures. As a result we found the similarity function with the best performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the process of language development, one of the most important tasks that children must face is that of identifying the grammatical category to which words in their language belong. This is essential in order to be able to form grammatically correct utterances. How do children proceed in order to classify words in their language and assign them to their corresponding grammatical category? The present study investigates the usefulness of phonological information for the categorization of nouns in English, given the fact that it is phonology the first source of information that might be available to prelinguistic infants who lack access to semantic information or complex morphosyntactic information. We analyse four different corpora containing linguistic samples of English speaking mothers addressing their children in order to explore the reliability with which words are represented in mothers’ speech based on several phonological criteria. The results of the analysis confirm the prediction that most of the words to which English learning infants are exposed during the first two years of life can be accounted for in terms of their phonological resemblance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engelskans dominerande roll som internationellt språk och andra globaliseringstrender påverkar också Svenskfinland. Dessa trender påverkar i sin tur förutsättningarna för lärande och undervisning i engelska som främmande språk, det vill säga undervisningsmålen, de förväntade elev- och lärarroller, materialens ändamålsenlighet, lärares och elevers initiala erfarenheter av engelska och engelskspråkiga länder. Denna studie undersöker förutsättningarna för lärande och professionell utveckling i det svenskspråkiga nybörjarklassrummet i engelska som främmande språk. Utgångsläget för 351 nybörjare i engelska som främmande språk och 19 av deras lärare beskrivs och analyseras. Resultaten tyder på att engelska håller på att bli ett andraspråk snarare än ett traditionellt främmande språk för många unga elever. Dessa elever har också goda förutsättningar att lära sig engelska utanför skolan. Sådan var dock inte situationen för alla elever, vilket tyder på att det finns en anmärkningsvärd heterogenitet och även regional variation i det finlandssvenska klassrummet i engelska som främmande språk. Lärarresultaten tyder på att vissa lärare har klarat av att på ett konstruktivt sätt att tackla de förutsättningar de möter. Andra lärare uttrycker frustration över sin arbetssituation, läroplanen, undervisningsmaterialen och andra aktörer som kommer är av betydelse för skolmiljön. Studien påvisar att förutsättningarna för lärande och undervisning i engelska som främmande språk varierar i Svenskfinland. För att stöda elevers och lärares utveckling föreslås att dialogen mellan aktörer på olika nivå i samhället bör förbättras och systematiseras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.