956 resultados para continental arc
Resumo:
The electric utility business is an inherently dangerous area to work in with employees exposed to many potential hazards daily. One such hazard is an arc flash. An arc flash is a rapid release of energy, referred to as incident energy, caused by an electric arc. Due to the random nature and occurrence of an arc flash, one can only prepare and minimize the extent of harm to themself, other employees and damage to equipment due to such a violent event. Effective January 1, 2009 the National Electric Safety Code (NESC) requires that an arc-flash assessment be performed by companies whose employees work on or near energized equipment to determine the potential exposure to an electric arc. To comply with the NESC requirement, Minnesota Power’s (MP’s) current short circuit and relay coordination software package, ASPEN OneLinerTM and one of the first software packages to implement an arc-flash module, is used to conduct an arc-flash hazard analysis. At the same time, the package is benchmarked against equations provided in the IEEE Std. 1584-2002 and ultimately used to determine the incident energy levels on the MP transmission system. This report goes into the depth of the history of arc-flash hazards, analysis methods, both software and empirical derived equations, issues of concern with calculation methods and the work conducted at MP. This work also produced two offline software products to conduct and verify an offline arc-flash hazard analysis.
Resumo:
Large earthquakes may strongly influence the activity of volcanoes through static and dynamic processes. In this study, we quantify the static and dynamic stress change on 27 volcanoes in Central America, after the Mw 7.6 Costa Rica earthquake of 5 September 2012. Following this event, 8 volcanoes showed signs of activity. We calculated the static stress change due to the earthquake on hypothetical faults under these volcanoes with Coulomb 3.3. For the dynamic stress change, we computed synthetic seismograms to simulate the waveforms at these volcanoes. We then calculated the Peak Dynamic Stress (PDS) from the modeled peak ground velocities. The resulting values are from moderate to minor changes in stress (10-1-10-2 MPa) with the PDS values generally an order of magnitude larger than the static stress change. Although these values are small, they may be enough to trigger a response by the volcanoes, and are on the order of stress changes implicated in many other studies of volcano and earthquake triggering by large earthquakes. This study provides insight into the poorly-constrained mechanism for remote triggering.
Resumo:
Discussion of subduction zones that are associated with volcanic arcs and major chemical exchanges between the Earth's surface and underlying mantle.
Resumo:
The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.
Resumo:
The original objective of this project was to determine the effect of varying current intensity and electrode coating composition upon the spatter losses and porosity of arc welds made by alternating current. This subject was suggested by the Welding Research Council of the Engineering Foundation, which is a clearing house for welding research in order to avoid duplication of work.