970 resultados para computer algorithm
Resumo:
Descriptors based on Molecular Interaction Fields (MIF) are highly suitable for drug discovery, but their size (thousands of variables) often limits their application in practice. Here we describe a simple and fast computational method that extracts from a MIF a handful of highly informative points (hot spots) which summarize the most relevant information. The method was specifically developed for drug discovery, is fast, and does not require human supervision, being suitable for its application on very large series of compounds. The quality of the results has been tested by running the method on the ligand structure of a large number of ligand-receptor complexes and then comparing the position of the selected hot spots with actual atoms of the receptor. As an additional test, the hot spots obtained with the novel method were used to obtain GRIND-like molecular descriptors which were compared with the original GRIND. In both cases the results show that the novel method is highly suitable for describing ligand-receptor interactions and compares favorably with other state-of-the-art methods.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
The measurement of rigidity and perseveration respectively gets increasing importance in clinical psychodiagnostics. Recently we have developed a computer-assisted technique which allows to get information about inadequate persisting in psychic processes and behaviour within shortest time and to differentiate between psychopathological groups. 257 patients of both sexes who came for elucidation of their disorders to the department of clinical psychodiagnostics were investigated. The most significant differences between the groups were found in redundance of second degree (the patient has to press 10 buttons indiscriminately according to the beat of a metronom--standard condition) and in personal speed (the patient has to press 10 buttons as fast as possible--speed condition). Furthermore the psychopathological groups were ranged in the particular variables of rigidity according to their mean values and their average ranges the schizophrenics and effective psychoses were characterized by a high tendency of perseveration while the neurotics, patients with organic brain syndrome and alcohol and drug dependents showed more flexibility.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
A new method of measuring joint angle using a combination of accelerometers and gyroscopes is presented. The method proposes a minimal sensor configuration with one sensor module mounted on each segment. The model is based on estimating the acceleration of the joint center of rotation by placing a pair of virtual sensors on the adjacent segments at the center of rotation. In the proposed technique, joint angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. The model considers anatomical aspects and is personalized for each subject prior to each measurement. The method was validated by measuring knee flexion-extension angles of eight subjects, walking at three different speeds, and comparing the results with a reference motion measurement system. The results are very close to those of the reference system presenting very small errors (rms = 1.3, mean = 0.2, SD = 1.1 deg) and excellent correlation coefficients (0.997). The algorithm is able to provide joint angles in real-time, and ready for use in gait analysis. Technically, the system is portable, easily mountable, and can be used for long term monitoring without hindrance to natural activities.
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section