980 resultados para capture into 1 : 1 resonance


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Now that the acquired immunodeficiency syndrome (AIDS) epidemic is well into its second decade, it has become evident that a small percentage (approximately 5%) of HIV-infected individuals do not experience progression of HIV disease even after several years of being infected with HIV. These individuals have been designated as 'long term non-progressors' (LTNPs). From a virologic standpoint, these LTNPs have low viral burden in mononuclear cells, but persistent virus replication as manifested by chronic and generally low levels of plasma viremia. From an immunologic standpoint, immune functions including CD8(+) T-cell- and CD4(+) T-cell-mediated functions are preserved. In addition, they show a vigorous humoral immune response. More importantly, lymphoid tissue structure and function are preserved in LTNPs. Despite persistent low-level virus replication and chronic stimulation of the immune system, immune activation is qualitatively and quantitatively different in LTNPs compared to that observed in HIV-infected individuals whose HIV disease has progressed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Axons, and particularly regenerating axons, have high metabolic needs in order to maintain critical functions such as axon transport and membrane depolarization. Though some of the required energy likely comes form extracellular glucose and ATP generated in the soma, we and others hypothesize that some of the energy may be supplied by lactate. Unlike glucose that requires glycolytic enzymes to produce pyruvate, lactate can be converted directly to pyruvate by lactate dehydrogenase and transported into mitochondria for oxidative metabolism. In order to be transported into or out of cells, lactate requires specific monocarboxylate transporters (MCTs), the most abundant of which is MCT1. If MCT1 and lactate are critical for nerve function and regeneration, we hypothesize that MCT1 heterozygote null mice, which appear phenotypically normal despite having approximately 40% MCT1 as compared to wildtype littermate mice, would have reduced capacity for repair following nerve injury. To investigate this, adult MCT1 heterozygote null mice or wild-type mice underwent unilateral sciatic nerve crush in the proximal thigh. We found that regeneration of the sciatic nerve, as measured by recovery of compound muscle action potentials (CMAP) in the lateral plantar muscles following proximal sciatic nerve stimulation, was delayed from a median of 21 days in wildtype mice to 38.5 days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote null mice had no recovery of CMAP by the endpoint of the study at 42 days, while all of the wild-type mice had recovered. In addition, the maximal amplitude of CMAP recovery in MCT1 heterozygote mull mice was reduced from a mean of 3 mV to 0.5 mV. As would be expected, the denervated gastrocnemius muscle of MCT1 heterozygote null mice remained atrophic at 42 days compared to wild-type mice. Our experiments show that lactate supplied through MCT1 is necessary for nerve regeneration. Experiments are underway to determine whether loss of MCT1 prevents nerve regrowth directly due to reduced energy supply to axons or indirectly by dysfunctional Schwann cells normally dependent on lactate supply through MCT1.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The self-antigen Melan-A/MART-1 is frequently involved in T-cell responses against malignant melanoma. The use of fluorescent tetramers incorporating the immunodominant Melan-A/MART-1 peptide has provided new insights into HLA-A2-restricted T-cell responses against this antigen in cancer patients and in healthy individuals. Direct evidence has been provided that a large Melan-A/MART-1-specific CD8 T-cell pool is generated during thymic selection. Although several other examples of naive self-peptide-specific T-cell repertoires are known, this is the only one directly accessible to analysis in healthy individuals

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Selenoproteins are a diverse group of proteinsusually misidentified and misannotated in sequencedatabases. The presence of an in-frame UGA (stop)codon in the coding sequence of selenoproteingenes precludes their identification and correctannotation. The in-frame UGA codons are recodedto cotranslationally incorporate selenocysteine,a rare selenium-containing amino acid. The developmentof ad hoc experimental and, more recently,computational approaches have allowed the efficientidentification and characterization of theselenoproteomes of a growing number of species.Today, dozens of selenoprotein families have beendescribed and more are being discovered in recentlysequenced species, but the correct genomic annotationis not available for the majority of thesegenes. SelenoDB is a long-term project that aims toprovide, through the collaborative effort of experimentaland computational researchers, automaticand manually curated annotations of selenoproteingenes, proteins and SECIS elements. Version 1.0 ofthe database includes an initial set of eukaryoticgenomic annotations, with special emphasis on thehuman selenoproteome, for immediate inspectionby selenium researchers or incorporation into moregeneral databases. SelenoDB is freely available athttp://www.selenodb.org.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An Iowa State University–led team facilitated development of the CP Road Map. They developed a database of existing research. They gathered input, face to face, from the highway community. They identified gaps in research that became the basis for problem statements, which they organized into a cohesive, strategic research plan.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The acquisition duration of most three-dimensional (3D) coronary magnetic resonance angiography (MRA) techniques is considerably prolonged, thereby precluding breathholding as a mechanism to suppress respiratory motion artifacts. Splitting the acquired 3D volume into multiple subvolumes or slabs serves to shorten individual breathhold duration. Still, problems associated with misregistration due to inconsistent depths of expiration and diaphragmatic drift during sustained respiration remain to be resolved. We propose the combination of an ultrafast 3D coronary MRA imaging sequence with prospective real-time navigator technology, which allows correction of the measured volume position. 3D volume splitting using prospective real-time navigator technology, was successfully applied for 3D coronary MRA in five healthy individuals. An ultrafast 3D interleaved hybrid gradient-echoplanar imaging sequence, including T2Prep for contrast enhancement, was used with the navigator localized at the basal anterior wall of the left ventricle. A 9-cm-thick volume, with in-plane spatial resolution of 1.1 x 2.2 mm, was acquired during five breathholds of 15-sec duration each. Consistently, no evidence of misregistration was observed in the images. Extensive contiguous segments of the left anterior descending coronary artery (48 +/- 18 mm) and the right coronary artery (75 +/- 5 mm) could be visualized. This technique has the potential for screening for anomalous coronary arteries, making it well suited as part of a larger clinical MR examination. In addition, this technique may also be applied as a scout scan, which allows an accurate definition of imaging planes for subsequent high-resolution coronary MRA.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

SUMMARY Cancer is one of the leading causes of disease-related mortality. In most cases, death is due to the spread of cells from the primary tumor to distant sites causing formation of metastases. To become tumorigenic, cells should acquire ability, including self-sufficiency in growth signals, insensitivity to anti-growth signals, resistance to apoptosis, sustained angiogenesis, limitless replicative potential and tissue invasion and metastasis. Tumor progression depends, in part on the relationship between tumor cells and host tissue stroma, characterized by changes of tumor cell adhesion to their microenvironment and activation of a variety of extracellular proteases that play a role in ECM degradation. integrins are adhesion proteins implicated in tumorigenesis. Their main function is to mediate cell adhesion to the ECM or to other cells and to create a link between the ECM and the cytoskeleton. Tumor cells like normal cells use integrins to attach to ECM, migrate into surrounding tissues and derive survival and growth signals. Integrin-dependent adhesion and migration are thought to play an important role in tumor dissemination. A strategy was designed to address the role of β1 integrin tumor growth and dissemination. Murine mammary carcinoma (TA3) cells were stably transfected with a soluble β1 integrin construct, which is anticipated to play a dominant negative role, being able to associate with different α-subunits expressed on the cell surface but unable to transduce signals to the nucleus. Results from studies based on soluble β1 integrin TA3 transfectants showed that 1) the integrin expression pattern at the cell surface changed with an induction of α2β1 and α5β1 heterodimers; 2) adhesion to collagens, especially collagen I was increased; 3) tumor dissemination after intrape-ritoneal injection in syngeneic mice was abolished and 4) local growth after orthotopic injection was maintained but delayed. Taken together, the data presented here suggest that β1 integrin plays a potentially important role in the regulation of tumor behavior. RESUME Le cancer est une des principales causes de mortalité suite à une maladie. Dans la plupart des cas, la mort est la conséquence de la dissémination de cellules, provenant de la tumeur primaire, dans des endroits distants et causant la formation de métastases. Afin de devenir cancéreuse, une cellule doit acquérir certaines capacités, telles qu'une auto-suffisance en facteurs de croissance, une insensibilité aux facteurs empêchant la croissance cellulaire, une résistance à l'apoptose, une angiogénèse soutenue, un potentiel de réplication illimité et une capacité à pénétrer dans les tissus et à former des colonies métastatiques. La progression d'une tumeur dépend, en partie, de la relation entre les cellules tumorales et les cellules tissulaires de l'hôte. Cette relation est caractérisée par des modifications des cellules tumorales quant à leur adhésion au microenvironnement et à l'activation de protéases qui permettent de dégrader la matrice extracellulaire. Les intégrines sont des protéines impliquées dans le développement tumoral. Leur fonction principale est de réguler l'adhésion des cellules à la matrice extracellulaire, ou à d'autres cellules, et de créer un lien entre cette matrice extracellulaire et le cytosquelette. Les cellules tumorales utilisent également les intégrines pour se lier à la matrice extracellulaire, pour migrer dans les tissus adjacents et pour induire des signaux de croissance et de survie. Ces événements d'adhésion et de migration, qui dépendent des intégrines, jouent un rôle primordial dans la dissémination des cellules cancéreuses. Une stratégie a été élaborée afin de définir le rôle de l'intégrine β1 durant la croissance et la dissémination des cellules tumorales. Des cellules provenant d'un carcinome de la glande mammaire (TA3) ont été transfectées de manière stable avec un vecteur contenant la séquence codante de la partie extracellulaire de l'intégrine β1. L'intégrine tronquée doit être capable de se lier aux sous-unités α exprimées à la surface de la cellule, mais doit être incapable de transmettre un signal à l'intérieur de la cellule. Les résultats obtenus avec les cellules TA3 transfectées contenant l'intégrine β1 soluble montrent que I) le répertoire d'expression des intégrines à la surface de la cellule a changé en faveur des hétérodimères α2β1 et α5β1; 2) l'adhésion aux collagènes, particulièrement au collagène de type I a augmenté; 3) la dissémination des cellules tumorales après une injection intrapéritonéale est empêchée; 4) la croissance tumorale après une injection orthotopique est conservée mais retardée. Ces résultats montrent que l'intégrine β1 joue un rôle primordial dans la régulation du comportement tumoral.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PURPOSE: Apoptotic arterial wall vascular smooth muscle cell death is known to contribute to plaque vulnerability and rupture. Novel apoptotic markers like apolipoprotein C-I have been implicated in apoptotic human vascular smooth muscle cell death via recruiting a neutral sphingomyelinase (N-SMase)-ceramide pathway. In vivo relevance of these observations in an animal model of plaque rupture has not been shown. METHODS AND RESULTS: Using Watanabe rabbits, we investigated three different groups (group 1, three normal Watanabe rabbits; group 2, six Watanabe rabbits fed with high cholesterol diet for 3 months; group 3, five Watanabe rabbits with similar diet but additional endothelial denudation). We followed progression of atherosclerosis to pharmacologically induced plaque rupture non-invasively using novel 3D magnetic resonance Fast-Field-Echo angiography (TR=7.2, TE=3.6 ms, matrix=512 x 512) and Fast-Spin-Echo vessel wall imaging methods (TR=3 heart beats, TE=10.5 ms, matrix=304 x 304) on 1.5 T MRI. MRI provided excellent image quality with good MRI versus histology vessel wall thickness correlation (r=0.8). In six animals of group 2/3 MRI detected neo-intimal dissection in the abdominal aorta which was accompanied by immuno-histochemical demonstration of concomitant aforementioned novel apoptotic markers, previously implicated in the apoptotic smooth muscle cell death in vitro. CONCLUSIONS: Our studies suggest a potential role for the signal transduction pathway involving apolipoprotein C-I for in vivo apoptosis and atherosclerotic plaque rupture visualized by MRI.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Résumé II y a cinq ans, la découverte d'un nouveau domaine, le PYD domaine, lié aux domaines de la mort, a permis la description de la nouvelle famille des NALP protéines. L'analyse structurelle de cette famille de protéines révéla la présence de deux autres domaines, impliqués dans l'oligomerisation, NACHT, et la détection des ligands, Leucine rich repeats ou LRR. Cette architecture protéique est homologue à celle qui est décrite pour les NODs, les Tol1 récepteurs et tes protéines de résistance chez les plantes. Cette homologie suggère une possible implication des NALPs dans la régulation de l'immunité innée. Premièrement, nous avons décrit les composants minimaux qui permettent à l'inflammasomeNALP3 d'activer la caspase pro-inflammatoire, caspase-1. En comparaison à NALP1, NALP3 ne contient pas de FIIND domaine, ni de CARD domaine en C-terminus et n'interagit pas avec caspase-5. Nous avons découvert une protéine très homologue au C-terminus de NALP1, Cardinal, qui se lie au NACHT domaine de NALP2 et NALP3 par l'intermédiaire de son FIIND domaine. Cardinal possède la capacité d'interagir avec caspase-l, mais seul ASC semble être nécessaire à la maturation de la prointerleukine-1β suite à la stimulation de NALP3. Deuxièmement, notre étude s'est concentrée sur la nature du stimulus capable d'induire la formation et l'activation de l'inflammasome-NALP3. Nous avons démontré que l'ajout de muramyl dipeptide (MDP), produit à partir de la digestion enzymatique de peptidoglycaris bactériens, induit à la fois l'expression de la proIL-1β par la voie NOD2 et sa maturation en IL-1β active par la voie NALP3. Bien que le MDP active l'inflammasome-NALP3, il est incapable d'induire la sécrétion de l'IL-1β mature dans la lignée cellulaire THP1, comparé aux monocytes primaires humains. Cette différence pourrait être liée à l'absence, dans les THP1, de la protéine Filamin, qui est proposée d'interagir avec Cardinal. L'implication de NALP3 dans la maturation de l'IL-lb est confirmée suite à la découverte de mutations sur le gène CIAS1/NALP3/cryopyrin associées à trois maladies auto-inflammatoires : le syndrome de Muckle-Wells (MWS), l'urticaire familial au froid (FCU) et le syndrome CINCA/NOMID. Une élévation constitutive de la maturation et de la sécrétion de la proIL-1β en absence de stimulation MDP est détectée dans les macrophages des patients Muckle-Wells. En conclusion, nos études ont démontré que l'inflammasome-NALP3 doit être finement régulé pour éviter une activité incontrôlée qui représente la base moléculaire des symptômes associés aux syndromes auto-inflammatoires liés à NALP3. Summary Five years ago, the description of the NALP family originated from the discovery of a new death-domain fold family, the PYD domain. NALP contains aprotein-protein interaction domain (PYD), an oligomerization domain (NACHT) and a ligand-sensing domain, leucine rich repeats or LRR. This protein architecture shares similarity with receptors involved in immunity, such as NODS, Toll receptors (TLRs) and related plant resistance proteins, and points to an important role of NALPs in defense mechanisms. We first described the minimal complex involved in the pro-inflammatory Interleukin-1beta (IL-1β) cytokine maturation, called the inflammasome, which contains NALP3. In contrast to NALP1, NALP3, like other members of the NALP family, is devoid of C-terminal FIIND and CARD domains and does not interact with the pro-inflammatory caspase-5. Interestingly, a homolog of the C-terminal portion of NALP1 was found in the human genome and was named Cardinal. We found that NALP2 and NALP3 interact with the CARD-containing proteins Cardinal. Cardinal is able to bind to caspase-1 but is not required for IL-1β maturation through NALP3 activation, as demonstrated for the adaptor ASC. Secondly, our study focused on the stimuli involved in the activation of the NALP3 inflammasome. MDP was shown to induce the expression of proIL1β through NOD2 and then the maturation into active IL-1β by activation of the NALP3 inflammasome. However, in the monocytic THP1 cell line, secretion of IL-1β upon MDP stimulation seems to be independent of the inflammasome activation compared to human primary monocytes. This difference might be linked to a Cardinal-interacting protein, filamin. Until now, the role of Cardinal and filamin is still unknown and remains to be elucidated. Finally, mutations in the NALP3/cryopyrin/CIAS1 gene are associated with three autoinflammatory diseases: Muckle-Wells syndrome, familial cold autoinflammatory syndrome, and CINCA. Constitutive, elevated IL-1β maturation and secretion, even in the absence of MDP stimulation, was observed in macrophages from Muckle-Wells patients and confirmed a key role for the NALP3 inflammasome in innate immunity In conclusion, our studies describes the formation of the NALP3 inflammasome and suggests that this complex has to be tightly regulated to avoid an increased deregulated inflammasome activity that is the molecular basis for the symptoms associated with NALP3-dependent autoinflammatory disorders.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Iowa Department of Elder Affairs, in collaboration with the Iowa Department of Elder Affairs (IDEA) and the University of Iowa College of Nursing (UI CON), has been engaged in developing and evaluating community based services for persons with dementia in the state of Iowa over the past 7 years under two grants form the Administration on Aging. In the current grant period, the involved agencies have completed a collaborative effort aimed to increase the capacity of Adult Day Health and Respite (ADR) providers in serving persons with dementia. Adult day services and respite care were identified by participants in the initial grant through various processes and service providers as important components of caring for persons with dementia and that there was a gap of these services in the state. Therefore, adult day and respite services were chosen as a target for the second AoA grant. The focus, in particular, was to enhance capacity to care for persons with later stages of the disease and those in rural settings as well as to begin to develop services that are more responsive to emerging minority populations. The process of the grant provided the state with a rich amount of information about the status of Iowa’s Adult Day Service providers in general and in regard to provision of dementia specific services, as well as valuable insights into the capability of rural communities to serve persons with dementia and their caregivers at home. Final Performance Report

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.