976 resultados para c-Jun-N-Terminal Kinase


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Germ-line missense mutations of the receptor-like tyrosine kinase ret are the causative genetic event of the multiple endocrine neoplasia (MEN) type 2A and type 2B syndromes and of the familial medullary thyroid carcinoma. We have used the rat pheochromocytoma cell line, PC12, as a model system to investigate the mechanism or mechanisms by which expression of activated ret alleles contributes to the neoplastic phenotype in neuroendocrine cells. Here we show that stable expression of ret mutants (MEN2A and MEN2B alleles) in PC12 cells causes a dramatic conversion from a round to a flat morphology, accompanied by the induction of genes belonging to the early as well as the delayed response to nerve growth factor. However, in the transfected PC12 cells, the continuous expression of neuronal specific genes is not associated with the suppression of cell proliferation. Furthermore, expression of ret mutants renders PC12 cells unresponsive to nerve growth factor-induced inhibition of proliferation. These results suggest that induction of an aberrant pattern of differentiation, accompanied by unresponsiveness to growth-inhibitory physiological signals, may be part of the mechanism of action of activated ret alleles in the pathogenesis of neuroendocrine tumors associated with MEN2 syndromes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NM23-H2, a presumed regulator of tumor metastasis in humans, is a hexameric protein with both enzymatic (NDP kinase) and regulatory (transcriptional activation) activity. While the structure and catalytic mechanisms have been well characterized, the mode of DNA binding is not known. We examined this latter function in a site-directed mutational study and identified residues and domains essential for the recognition of a c-myc regulatory sequence. Three amino acids, Arg-34, Asn-69, and Lys-135, were found among 30 possibilities to be critical for DNA binding. Two of these, Asn-69 and Lys-135, are not conserved between NM23 variants differing in DNA-binding potential, suggesting that DNA recognition resides partly in nonconserved amino acids. All three DNA-binding defective mutant proteins are active enzymatically and appear to be stable hexamers, suggesting that they perform at the level of DNA recognition and that separate functional domains exist for enzyme catalysis and DNA binding. In the context of the known crystal structure of NM23-H2, the DNA-binding residues are located within distinct structural motifs in the monomer, which are exposed to the surface near the 2-fold axis of adjacent subunits in the hexamer. These findings are explained by a model in which NM23-H2 binds DNA with a combinatorial surface consisting of the "outer" face of the dimer. Chemical crosslinking data support a dimeric DNA-binding mode by NM23-H2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interleukin 1 is the prototype of an inflammatory cytokine, and evidence suggests that it uses the sphingomyelin pathway and ceramide production to trigger mitogen-activated protein kinase (MAPK) activation and subsequent gene expression required for acute inflammatory processes. To identify downstream signaling targets of ceramide, a radioiodinated photoaffinity labeling analog of ceramide ([125I] 3-trifluoromethyl-3-(m-iodophenyl)diazirine-ceramide) was employed. It is observed that ceramide specifically binds to and activates protein kinase c-Raf, leading to a subsequent activation of the MAPK cascade. Ceramide does not bind to any other member of the MAPK module nor does it bind to protein kinase C-zeta. These data identify protein kinase c-Raf as a specific molecular target for interleukin 1 beta-stimulated ceramide formation and demonstrate that ceramide is a lipid cofactor participating in regulation of c-Raf activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Treatment of quiescent Swiss 3T3 fibroblasts with serum, or with the phosphatase inhibitors okadaic acid and vanadate, induced a 2- to 11-fold activation of the serine/ threonine RAC protein kinase (RAC-PK). Kinase activation was accompanied by decreased mobility of RAC-PK on SDS/PAGE such that three electrophoretic species (a to c) of the kinase were detected by immunoblot analysis, indicative of differentially phosphorylated forms. Addition of vanadate to arrested cells increased the RAC-PK phosphorylation level 3-to 4-fold. Unstimulated RAC-PK was phosphorylated predominantly on serine, whereas the activated kinase was phosphorylated on both serine and threonine residues. Treatment of RAC-PK in vitro with protein phosphatase 2A led to kinase inactivation and an increase in electrophoretic mobility. Deletion of the N-terminal region containing the pleckstrin homology domain did not affect RAC-PK activation by okadaic acid, but it reduced vanadate-stimulated activity and also blocked the serum-induced activation. Deletion of the serine/threonine rich C-terminal region impaired both RAC-PKalpha basal and vanadate-stimulated activity. Studies using a kinase-deficient mutant indicated that autophosphorylation is not involved in RAC-PKalpha activation. Stimulation of RAC-PK activity and electrophoretic mobility changes induced by serum were sensitive to wortmannin. Taken together the results suggest that RAC-PK is a component of a signaling pathway regulated by phosphatidylinositol (PI) 3-kinase, whose action is required for RAC-PK activation by phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strongly rectifying IRK-type inwardly rectifying K+ channels are involved in the control of neuronal excitability in the mammalian brain. Whole-cell patch-clamp experiments show that cloned rat IRK1 (Kir 2.1) channels, when heterologously expressed in mammalian COS-7 cells, are inhibited following the activation of coexpressed serotonin (5-hydroxytryptamine) type 1A receptors by receptor agonists. Inhibition is mimicked by internal perfusion with GTP[gamma-S] and elevation of internal cAMP concentrations. Addition of the catalytic subunits of protein kinase A (PKA) to the internal recording solution causes complete inhibition of wild-type IRK1 channels, but not of mutant IRK1(S425N) channels in which a C-terminal PKA phosphorylation site has been removed. Our data suggest that in the nervous system serotonin may negatively control IRK1 channel activity by direct PKA-mediated phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The possible relationship of selenium to immunological function which has been suggested for decades was investigated in studies on selenium metabolism in human T cells. One of the major 75Se-labeled selenoproteins detected was purified to homogeneity and shown to be a homodimer of 55-kDa subunits. Each subunit contained about 1 FAD and at least 0.74 Se. This protein proved to be thioredoxin reductase (TR) on the basis of its catalytic activities, cross-reactivity with anti-rat liver TR antibodies, and sequence identities of several tryptic peptides with the published deduced sequence of human placental TR. Physicochemical characteristics of T-cell TR were similar to those of a selenocysteine (Secys)-containing TR recently isolated from human lung adenocarcinoma cells. The sequence of a 12-residue 75Se-labeled tryptic peptide from T-cell TR was identical with a C-terminal-deduced sequence of human placental TR except that Secys was present in the position corresponding to TGA, previously thought to be the termination codon, and this was followed by Gly-499, the actual C-terminal amino acid. The presence of the unusual conserved Cys-Secys-Gly sequence at the C terminus of TR in addition to the redox active cysteines of the Cys-Val-Asn-Val-Gly-Cys motif in the FAD-binding region may account for the peroxidase activity and the relatively low substrate specificity of mammalian TRs. The finding that T-cell TR is a selenoenzyme that contains Se in a conserved C-terminal region provides another example of the role of selenium in a major antioxidant enzyme system (i.e., thioredoxin-thioredoxin reductase), in addition to the well-known glutathione peroxidase enzyme system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

rho-like GTP binding proteins play an essential role in regulating cell growth and actin polymerization. These molecular switches are positively regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP. Using the interaction-trap assay to identify candidate proteins that bind the cytoplasmic region of the LAR transmembrane protein tyrosine phosphatase (PT-Pase), we isolated a cDNA encoding a 2861-amino acid protein termed Trio that contains three enzyme domains: two functional GEF domains and a protein serine/threonine kinase (PSK) domain. One of the Trio GEF domains (Trio GEF-D1) has rac-specific GEF activity, while the other Trio GEF domain (Trio GEF-D2) has rho-specific activity. The C-terminal PSK domain is adjacent to an Ig-like domain and is most similar to calcium/calmodulin-dependent kinases, such as smooth muscle myosin light chain kinase which similarly contains associated Ig-like domains. Near the N terminus, Trio has four spectrin-like repeats that may play a role in intracellular targeting. Northern blot analysis indicates that Trio has a broad tissue distribution. Trio appears to be phosphorylated only on serine residues, suggesting that Trio is not a LAR substrate, but rather that it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions, we propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myeloid leukemia M1 cells can be induced for growth arrest and terminal differentiation into macrophages in response to interleukin 6 (IL-6) or leukemia inhibitory factor (LIF). Recently, a large number of cytokines and growth factors have been shown to activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In the case of IL-6 and LIF, which share a signal transducing receptor gp130, STAT3 is specifically tyrosine-phosphorylated and activated by stimulation with each cytokine in various cell types. To know the role of JAK-STAT pathway in M1 differentiation, we have constructed dominant negative forms of STAT3 and established M1 cell lines that constitutively express them. These M1 cells that overexpressed dominant negative forms showed no induction of differentiation-associated markers including Fc gamma receptors, ferritin light chain, and lysozyme after treatment with IL-6. Expression of either c-myb or c-myc was not downregulated. Furthermore, IL-6- and LIF-mediated growth arrest and apoptosis were completely blocked. Thus these findings demonstrate that STAT3 activation is the critical step in a cascade of events that leads to terminal differentiation of M1 cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ribonucleolytic activity of angiogenin (Ang) is essential to Ang's capacity to induce blood vessel formation. Previous x-ray diffraction and mutagenesis results have shown that the active site of the human protein is obstructed by Gln-117 and imply that the C-terminal region of Ang must undergo a conformational rearrangement to allow substrate binding and catalysis. As a first step toward structural characterization of this conformational change, additional site-directed mutagenesis and kinetic analysis have been used to examine the intramolecular interactions that stabilize the inactive conformation of the protein. Two residues of this region, Ile-119 and Phe-120, are found to make hydrophobic interactions with the remainder of the protein and thereby help to keep Gln-117 in its obstructive position. Furthermore, the suppression of activity by the intramolecular interactions of Ile-119 and Phe-120 is counterbalanced by an effect of the adjacent residues, Arg-121, Arg-122, and Pro-123 which do not appear to form contacts with the rest of the protein structure. They contribute to enzymatic activity, probably by constituting a peripheral subsite for binding polymeric substrates. The results reveal the nature of the conformational change in human Ang and assign a key role to the C-terminal region both in this process and, presumably, in the regulation of human Ang function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein kinase C (PKC), a major cellular receptor for tumor-promoting phorbol esters and diacylglycerols (DGs), appears to be involved in a variety of cellular functions, although its activation mechanism in vivo is not yet fully understood. To evaluate the signaling pathways involved in the activation of PKC epsilon upon stimulation by platelet-derived growth factor (PDGF) receptor (PDGFR), we used a series of PDGFR "add-back" mutants. Activation of a PDGFR mutant (Y40/51) that binds and activates phosphatidylinositol 3-kinase (PI 3-kinase) caused translocation of PKC epsilon from the cytosol to the membrane in response to PDGF. A PDGFR mutant (Y1021) that binds and activates phospholipase C gamma (PLC gamma), but not PI 3-kinase, also caused the PDGF-dependent translocation of PKC epsilon. The translocation of PKC epsilon upon stimulation of PDGFR (Y40/51) was inhibited by wortmannin, an inhibitor of PI 3-kinase. Activation of PKC epsilon was further confirmed in terms of PKC epsilon-dependent expression of a phorbol 12-tetradecanoate 13-acetate response element (TRE)-luciferase reporter. Further, purified PKC epsilon was activated in vitro by either DG or synthetic phosphatidylinositol 3,4,5-trisphosphate. These results clearly demonstrate that PKC epsilon is activated through redundant and independent signaling pathways which most likely involve PLC gamma or PI 3-kinase in vivo and that PKC epsilon is one of the downstream mediators of PI 3-kinase whose downstream targets remain to be identified.