953 resultados para bond rotation
Resumo:
Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.
Resumo:
The reactions involving fulvenes and its derivatives have received a great deal of attention over the years in synthetic organic chemistry. Functionalizations of fulvenes provide versatile and powerful approaches to various polycyclic systems and natural products. They serve as versatile intermediates in the construction of various ring systems through inter- as well as intramolecular cycloadditions. Compared to the rich literature on the cycloaddition reactions of pentafulvenes, much less attention has been paid to the synthetic utilization of their cycloadducts. Tactical manipulations on the chosen adduct offer the prospects for designing a variety of useful molecular skeletons. Addition of heterodienophiles to fulvenes offers an efficient strategy towards the synthesis of azabicyclic olefins. However, there have been no serious attempts to study the synthetic utility of these substrates. In this context and with the intention of utilizing pentafulvenes towards synthetically important molecules, author decided to explore the reactivity of pentafulvene derived azabicyclic olefins. Our attention was focused on the synthetic potential associated with the ring opening of fulvene derived bicyclic hydrazines under palladium catalysis. It was envisioned that the desymmetrization of these adducts using various soft nucleophiles will provide a novel access to synthetically and biologically important alkylidene cyclopentenes. The investigations along this line form the focal theme of this thesis entitled “PALLADIUM CATALYZED CARBONCARBON/ CARBON-HETEROATOM BOND FORMATION REACTIONS UTILIZING PENTAFULVENE DERIVED BICYCLIC HYDRAZINES
Resumo:
Durch asymmetrische Doppelbindungsisomerisierung mittels Me-DuPHOS-modifizierter Dihalogen-Nickel-Komplexe als Katalysatorvorstufen lassen sich aus 2-Alkyl-4,7-dihydro-1,3-dioxepinen hochenantiomerenreine 2-Alkyl-4,5-dihydro-1,3-dioxepine erhalten. Ein Ziel dieser Arbeit war es, die bisher noch unbekannte Absolutkonfiguration dieses Verbindungstyps zu bestimmen und darüber hinaus ihre Einsatzfähigkeit in der enantioselektiven organischen Synthese zu untersuchen. Zu diesem Zweck wurden enantiomerenangereichertes 2-Isopropyl- und 2-tert-Butyl-4,5-dihydro-1,3-dioxepin mit m-Chlorperbenzoesäure epoxidiert. Dabei bildeten sich die entsprechenden 3-Chlorbenzoesäure-(2-alkyl-5-hydroxy-1,3-dioxepan-4yl)-ester in hohen Ausbeuten und Diastereoselektivitäten. Von den vier zu erwartenden Diastereomeren wurden jeweils nur zwei mit einer Selektivität von mehr als 95:5 gebildet. Im Fall des 3-Chlorbenzoesäure-(2-isopropyl-5-hydroxy-1,3-dioxepan-4yl)-esters konnte das Haupt-diastereomer kristallin erhalten werden. Durch röntgenspektroskopische Untersuchung war es möglich, die Relativ-Konfiguration dieser Verbindung zu bestimmen. Die Ester lassen sich unter Ringverengung in 2-Alkyl-1,3-dioxan-4-carbaldehyde umlagern. Ausgehend von diesen Carbaldehyden stehen zwei Synthesewege zur Verfügung, welche zu Verbindungen führen deren Absolutkonfiguration bereits bekannt ist. So erhält man durch Reduktion 2-Alkyl-1,3-dioxan-4-yl-methanole, welche sich in 1,2,4-Butantriol überführen lassen. Oxidation ergibt die 2-Alkyl-1,3-dioxan-4-carbonsäuren, aus denen 3-Hydroxytetrahydrofuran-2-on gewonnen werden kann. Messung des Drehwertes dieser beiden literaturbekannten Verbindungen liefert nicht nur Information über deren Enantiomerenreinheit sondern ebenfalls über die Konfiguration ihres Stereozentrums. In Kombination mit der Relativ-Konfiguration des Esters ist somit ein Rückschluss auf die Absolutkonfiguration der eingesetzten 4,5-Dihydro-1,3-dioxepine möglich. Die auf den beschriebenen Wegen gewonnenen Substanzen finden Anwendung in der stereoselektiven organischen Synthese. Löst man die Chlorbenzoesäureester in Dichlormethan und behandelt sie mit wässriger Salzsäure, so entstehen die bicyclischen 2-Alkyltetrahydrofuro[2,3-d][1,3]dioxole. Auch bei diesen Verbindungen konnten hohe Enantio- und Diastereoselektivitäten erzielt werden. Der intermolekular verlaufende Reaktionsmechanismus der Bicyclus-Bildung, welcher unter Abspaltung eines den Alkylrest tragenden Aldehyds und dessen Neuanlagerung unter Ausbildung eines Acetals verläuft, konnte in dieser Arbeit durch ein Kreuzungsexperiment bestätigt werden. Umacetalisierung der Bicyclen liefert 2-Methoxytetrahydrofuran-3-ol, aus dem durch Acetalspaltung Tetrahydrofuran-2,3-diol erhalten wird, das die Halbacetalform der entsprechenden Desoxytetrose darstellt, die auf diese Weise in einer de novo-Synthese hergestellt werden kann.
Resumo:
On-farm experiments and pot trials were conducted on eight West African soils to explore the mechanisms governing the often reported legume rotation-induced cereal growth increases in this region. Crops comprised pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor Moench), maize (Zea mays L.), cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). In groundnut trials the observed 26 to 85% increases in total dry matter (TDM) of rotation cereals (RC) compared with continuous cereals (CC) in the 4th year appeared to be triggered by site- and crop-specific early season differences in nematode infestation (up to 6-fold lower in RC than in CC), enhanced Nmin and a 7% increase in mycorrhizal (AM) infection. In cowpea trials yield effects on millet and differences in nematode numbers, Nmin and AM were much smaller. Rhizosphere studies indicated effects on pH and acid phosphatase activity as secondary causes for the observed growth differences between RC and CC. In the study region legume-rotation effects on cereals seemed to depend on the capability of the legume to suppress nematodes and to enhance early N and P availability for the subsequent cereal.
Resumo:
The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.
Resumo:
Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plantgrowth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.
Resumo:
To determine the size dependence of the bonding in divalent-metal clusters we use a many-electron Hamiltonian describing the interplay between van der Waals (vdW) and covalent interactions. Using a saddle-point slave-boson method and taking into account the size-dependent screening of charge fluctuations, we obtain for Hg_n a sharp transition from vdW to covalent bonding for increasing n. We show also, by solving the model Hamiltonian exactly, that for divalent metals vdW and covalent bonding coexist already in the dimers.
Resumo:
This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.
Resumo:
Many ultrafast structural phenomena in solids at high fluences are related to the hardening or softening of particular lattice vibrations at lower fluences. In this paper we relate femtosecond-laser-induced phonon frequency changes to changes in the electronic density of states, which need to be evaluated only in the electronic ground state, following phonon displacement patterns. We illustrate this relationship for a particular lattice vibration of magnesium, for which we—surprisingly—find that there is both softening and hardening as a function of the femtosecond-laser fluence. Using our theory, we explain these behaviours as arising from Van Hove singularities: We show that at low excitation densities Van Hove singularities near the Fermi level dominate the change of the phonon frequency while at higher excitations Van Hove singularities that are further away in energy also become important. We expect that our theory can as well shed light on the effects of laser excitation of other materials.
Resumo:
The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.
Resumo:
This paper describes a simple method for internal camera calibration for computer vision. This method is based on tracking image features through a sequence of images while the camera undergoes pure rotation. The location of the features relative to the camera or to each other need not be known and therefore this method can be used both for laboratory calibration and for self calibration in autonomous robots working in unstructured environments. A second method of calibration is also presented. This method uses simple geometric objects such as spheres and straight lines to The camera parameters. Calibration is performed using both methods and the results compared.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
El presente trabajo de investigación tiene como objetivo identificar el papel que tuvo el Fondo Monetario Internacional [FMI] en el cambio de la imagen del Estado argentino después de la crisis financiera que estalló en el 2001. Como consecuencia de la declaración de default por parte del gobierno argentino se da un cambio en la imagen financiera del país, influenciada por el FMI, que convierte a Argentina en un paria internacional en temas financieros y comerciales alejándolo de los mercados internacionales. Este estudio de caso tendrá un acercamiento cualitativo dado que se analizarán las características, actuaciones y las bases crean el lazo entre las variables de la crisis financiera y el rol del FMI en Argentina y así poder entender su relación.