791 resultados para biodiversity conservation
Resumo:
1. The acceptance of reserves as a useful management strategy relies on evidence of their effectiveness in preserving stocks of harvested species and conserving biodiversity. A history of ad hoc decisions in terrestrial and marine protected area planning has meant that many of these areas are contributing inefficiently to conservation goals. The conservation value of existing protected areas should be assessed when planning the placement of additional areas in a reserve network. 2. This study tested (1) the effectiveness of protection for intertidal molluscs of a marine reserve (Bouddi Marine Extension, NSW, Australia) established in 1971, and (2) the contribution of the protected area to the conservation of regional species, assemblages, and habitats. 3. The shell length and population density of one harvested (Cellana tramoserica), and three non-harvested species (Bembicium nanum, Morula marginalba, Nerita atramentosa) of intertidal molluscs were examined in the protected area and two reference locations over two seasons. 4. The heavily collected limpet C. tramoserica was significantly larger in the protected area and was the only species to exhibit a significant difference. No species significantly differed in population density between the protected area and reference locations. 5. Temporally replicated surveys of macro-molluscs at 21 locations over 75km of coastline identified that the existing protected area included 50% of species, two of five assemblage types and 19 of 20 intertidal rocky shore habitats surveyed in the study region. Reservation of a further three rocky reefs would protect a large proportion of species (71%), a representative of each assemblage and all habitat types. 6. Despite originally being selected in the absence of information on regional biodiversity, the protected area is today an effective starting point for expansion to a regional network of intertidal protected areas.
Resumo:
The north-eastern escarpment of Madagascar has been labelled a global biodiversity hotspot due to its extremely high rates of endemic species which are heavily threatened by accelerated deforestation rates and landscape change. The traditional practice of shifting cultivation or "tavy" used by the majority of land users in this area to produce subsistence rice is commonly blamed for these threats. A wide range of stakeholders ranging from conservation to development agencies, and from the private to the public sector has therefore been involved in trying to find solutions to protect the remaining forest fragments and to increase agricultural production. Consequently, provisioning, regulating and socio-cultural services of this forest-mosaic landscape are fundamentally altered leading to trade-offs between them and consequently new winners and losers amongst the stakeholders at different scales. However, despite a growing amount of evidence from case studies analysing local changes, the regional dynamics of the landscape and their contribution to such trade-offs remain poorely understood. This study therefore aims at using generalised landscape units as a base for the assessment of multi-level stakeholder claims on ecosystem services to inform negotiation, planning and decision making at a meso-scale. The presented study applies a mixed-method approach combining remote sensing, GIS and socio-economic methods to reveal current landscape dynamics, their change over time and the corresponding ecosystem service trade-offs induced by diverse stakeholder claims on the regional level. In a first step a new regional land cover classification for three points in time (1995, 2005 and 2011) was conducted including agricultural classes characteristic for shifting cultivation systems. Secondly, a novel GIS approach, termed “landscape mosaics approach” originally developed to assess dynamics of shifting cultivation landscapes in Laos was applied. Through this approach generalised landscape mosaics were generated allowing for a better understanding of changes in land use intensities instead of land cover. As a next step we will try to use these landscape units as proxies to map provisioning and regulating ecosystem services throughout the region. Through the overlay with other regional background data such as accessibility and population density and information from a region-wide stakeholder analysis, multiscale trade-offs between different services will be highlighted. The trade-offs observed on the regional scale will then be validated through a socio-economic ground-truthing within selected sites at the local scale. We propose that such meso-scale knowledge is required by all stakeholders involved in decision making towards sustainable development of north-eastern Madagascar.
Resumo:
Combined approaches to conserve both biological and cultural diversity are seen as an alternative to classical nature conservation instruments. The objective of this study was to examine the influence of urbanization coupled with exclusive conservation measures, on land use, local knowledge and biodiversity in two Quechua speaking communities of Bolivia located within the Tunari National Park. We assessed and compared the links between land use, its transformation through conservation practices, local institutions and the worldviews of both communities and the implications they have for biodiversity at the level of ecosystems. Our results show that in both communities, people’s worldviews and environmental knowledge are linked with an integral and diversified use of their territory. However, the community most affected by urbanization and protected area regulations has intensified agriculture in a small area and has abandoned the use of large areas. This was accompanied by a loss of local environmental knowledge and a decrease in the diversity of ecosystems. The second community, where the park was not enforced, continues to manage their territory as a material expression of local environmental knowledge, while adopting community-based conservation measures with external support. Our findings highlight a case in which urbanization coupled with exclusive conservation approaches affects the components of both cultural and biological diversity. Actions that aim to enhance biocultural diversity in this context should therefore address the impact of factors identified as responsible for change in integrated social-ecological systems.
Resumo:
Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.
Resumo:
This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
Resumo:
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
Native trees and shrubs are essential components of rural landscapes in the semi-arid inner-Andean valleys of Bolivia. They can be found as hedges and bushes in various agroecosystems such as terrace walls, slopes, field boundaries and fallow land. Their distribution and floristic composition are the result of dynamic spatial and temporal interactions between local farmers and the environment. Local uses of natural resources and biodiversity reflect the constantly evolving Andean culture, which can be generally characterised as an intertwining of the human, natural, and spiritual worlds. The aim of the present ethnobotanical study was to analyse the dynamics of traditional ecological knowledge, to ascertain local farmers’ perceptions and uses of native woody species in Andean communities and to associate the results with local conservation activities for the trees and shrubs concerned. Our case study was carried out within two communities of the Tunari National Park (Dept. Cochabamba) in Bolivia. For data collection, research methods from social science (semi-structured interviews, participative observation, participatory mapping) as well as vegetation surveys were combined. Local actors included women and men of all ages as well as families from different social categories and altitudinal levels of permanent residence. Our study indicates that, due to a multitude of socio-economic pressures (e.g. migration of young people) as well as changes in use of biodiversity (e.g. replacement of native by exotic introduced species), the traditional ecological knowledge base of native trees and shrubs and their respective uses has become diminished over time. In many cases it has led to a decline in people’s awareness of native species and as a consequence their practical, emotional and spiritual relationships with them have been lost. However, results also show that applied traditional ecological knowledge has led to local conservation strategies, which have succeeded in protecting those tree and shrub species which are most widely regarded for their multifunctional, constant and exclusive uses (e.g. Schinus molle, Prosopis laevigata, Baccharis dracunculifolia). The presentation will discuss the question if and how applied traditional ecological knowledge positively contributes to local initiatives of sustainable use and conservation of biodiversity in rural areas.
Resumo:
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys.
Resumo:
The north-eastern escarpment of Madagascar has been deemed a global hotspot of biodiversity due to its high levels of endemic speciesbeing heavily threatened by accelerated deforestation rates and landscape changes. The main concern for conservation of the remaining humid primary forests is the shifting cultivation practices of local smallholder farmers for rice production. According to the mainstream narrative, human population growth leads to a shortening of crop-fallow cycles and thus to the accelerated conversion of forests to agricultural land. However, little is currently known about the dynamic changes between forest and shifting cultivation systems at the regional level. Existing land cover change analyses in this area have so far only focused on binary forest to non-forest changes and have therefore failed to account for the dynamic nature of the change processes between forest and different agriculture land use systems. This can be partly explained by the significant challenge to delineate shifting cultivation systems on land cover maps using traditional remote sensing classification approaches. To address this gap we therefore applied a novel GIS approach, that was originally developed for the assessment of shifting cultivation dynamics in Laos and has so far never been applied elsewhere, to map shifting cultivation of different crop-fallow lengths as well as permanent agriculture land use at the regional level. Change analyses of land use maps between 1995 and 2011 allowed us to comprehend the general trends of land use trajectories and their spatial variation. This more detailed understanding of land use change dynamics is key to plan for successful interventions to slow forest loss while at the same time improving local livelihoods. We further believe that this approach holds great potential for conservation monitoring in this resource-rich but povertyprone conservation hotspot.
Resumo:
Due to its extraordinary biodiversity and rapid deforestation, north-eastern Madagascar is a conservation hotspot of global importance. Reducing shifting cultivation is a high priority for policy-makers and conservationists; however, spatially explicit evidence of shifting cultivation is lacking due to the difficulty of mapping it with common remote sensing methods. To overcome this challenge, we adopted a landscape mosaic approach to assess the changes between natural forests, shifting cultivation and permanent cultivation systems at the regional level from 1995 to 2011. Our study confirmed that shifting cultivation is still being used to produce subsistence rice throughout the region, but there is a trend of intensification away from shifting cultivation towards permanent rice production, especially near protected areas. While large continuous forest exists today only in the core zones of protected areas, the agricultural matrix is still dominated by a dense cover of tree crops and smaller forest fragments. We believe that this evidence makes a crucial contribution to the development of interventions to prevent further conversion of forest to agricultural land while improving local land users' well-being.