947 resultados para anionic contaminants
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
We report the antinociceptive activity, determined by the writhing, formalin and hot-plate tests in mice, of crude (F0/60), lectin and carbohydrate fractions isolated by ammonium sulfate precipitation (0 to 60%) from Bryothamnion seaforthii and B. triquetrum, species of red algae. Not only fraction F0/60 but also lectins from both species significantly inhibited acetic acid-induced abdominal contractions after intraperitoneal or oral administrations. In the formalin test, lectins (1 and 5 mg/kg, ip, and 5 to 20 mg/kg, po) inhibited the 1st and 2nd phases (5 and 20 min, respectively), but the effect occurred predominantly on the 2nd phase. The effects of the lectins were totally or partially reversed by naloxone (2 mg/kg, sc) in the 1st and 2nd phases, respectively. Experiments performed with lectins in the absence and presence of avidin (1 mg/kg, ip) and D-mannose (1 mg/kg, ip) showed that avidin did not interfere with the effect of B. seaforthii lectin but partially reversed the effect of B. triquetrum lectin. D-Mannose completely reversed the effects of both species. F0/60 fractions from both algae significantly increased the latency time in response to thermal stimuli, and naloxone reversed antinociception, indicating the involvement of the opioid system in both the peripheral and central effects of the fractions. In the writhing test, the carbohydrate fractions were the most active, inhibiting the contractions by 71 and 79% (B. triquetrum) and by 46 and 69% (B. seaforthii) at doses of 1 and 5 mg/kg, ip, respectively. Sulfated carbohydrate fractions of B. seaforthii and B. triquetrum, containing only about 5% protein as contaminants, are probably responsible for the antinociceptive effects of these red algae.
Resumo:
Dissolving cellulose is the first main step in preparing novel cellulosicmaterials. Since cellulosic fibres cannot be easily dissolved in water-based solvents, fibres were pretreated with ethanol-acid solution prior to the dissolution. Solubility and changes on the surface of the fibres were studied with microscopy and capillary viscometry. After the treatment, the cellulose fibres were soluble in alkaline urea-water solvent. The nature of this viscous solution was studied rheologically. Cellulose microspheres were prepared by extruding the alkaline cellulose solution through the needle into an acidic medium. By altering the temperature and acidity of the mediumit was possible to adjust the specific surface area and pore sizes of themicrospheres. A typical skin-core structure was found in all samples. Microspheres were oxidised in order to introduce anionic carboxylic acid groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake increased 25 times after oxidation and they could swell almost to their original state (88%) after drying and shrinking. Swelling was studied in simulated physiological environments, corresponding to stomach acid and intestines (pH 1.2-7.4). Oxidised microspheres were used as a drug carriers. They demonstrated a highmass uniformity, which would enable their use for personalised dosing among different patients, including children. The drug was solidified in microspheres in amorphous form. This enhanced solubility and could be used for more challenging drugs with poor solubility. The pores of themicrospheres also remained open after the drug was loaded and they were dried. Regardless of the swelling, the drug was released at a constant rate in all environments.
Resumo:
Tutkimuksen tarkoituksena oli kartoittaa lämpötilan vaikutusta veden orgaanisten haitta-aineiden hapetuksessa PCD-menetelmällä. Kokeita tehtiin näytteiden eri alkulämpötiloilla. Malliyhdisteenä kokeissa käytettiin oksaalihappoa. Teoriaosuudessa käsiteltiin pulssittaista koronapurkausta ilmiönä. Lisäksi tarkasteltiin, kuinka PCD-menetelmällä muodostuu hapettimia neste-kaasufaasissa. Syntyvistä hapettimista keskityttiin otsoniin ja hydroksyyliradikaaliin. Kokeellisessa osuudessa esiteltiin käytetty PCD-laitteisto. Esittelyn jälkeen siirryttiin hapetuskokeiden kuvaamiseen ja analyysin suorittamiseen titrauksella. Lopuksi koottiin tulokset. Tutkimuksissa prosessin hapetustehon havaittiin heikentyvän lämpötilan noustessa tutkitulla lämpötila-alueella, mikä voi selittyä kaasufaasissa muodostuvan otsonin heikentyvällä liukoisuudella. Tuloksia voidaan pitää viitteellisinä, ja selkeän mallin muodostamiseksi tarvitaan jatkotutkimuksia laajemmalla lämpötila-alueella tarkasti toistettavilla koejärjestelyillä.
Resumo:
Increasing demand and shortage of energy resources and clean water due to the rapid development of industry, population growth and long term droughts have become an issue worldwide. As a result, global warming, long term droughts and pollution-related diseases are becoming more and more serious. The traditional technologies, such as precipitation, neutralization, sedimentation, filtration and waste immobilization, cannot prevent the pollution but restrict the waste chemicals only after the pollution emission. Meanwhile, most of these treatments cannot thoroughly degrade the contaminants and may generate toxic secondary pollutants into ecosystem. Heterogeneous photocatalysis as the innovative wastewater technology attracts many attention, because it is able to generate highly reactive transitory species for total degradation of organic compounds, water pathogens and disinfection by-products. Semiconductor as photocatalysts have demonstrated their efficiency in degrading a wide range of organics into readily biodegradable compounds, and eventually mineralized them to innocuous carbon dioxide and water. But, the efficiency of photocatalysis is limited, and hence, it is crucial issue to modify photocatalyst to enhance photocatalytic activity. In this thesis, first of all, two literature views are conducted. A survey of materials for photocatalysis has been carried out in order to summarize the properties and the applications of photocatalysts that have been developed in this field. Meanwhile, the strategy for the improvement of photocatalytic activity have been explicit discussed. Furthermore, all the raw material and chemicals used in this work have been listed as well as a specific experimental process and characterization method has been described. The synthesize methods of different photocatalysts have been depicted step by step. Among these cases, different modification strategies have been used to enhance the efficiency of photocatalyst on degradation of organic compounds (Methylene Blue or Phenol). For each case, photocatalytic experiments have been done to exhibit their photocatalytic activity.The photocatalytic experiments have been designed and its process have been explained and illustrated in detailed. Moreover, the experimental results have been shown and discussion. All the findings have been demonstrated in detail and discussed case by case. Eventually, the mechanisms on the improvement of photocatalytic activities have been clarified by characterization of samples and analysis of results. As a conclusion, the photocatalytic activities of selected semiconductors have been successfully enhanced via choosing appropriate strategy for the modification of photocatalysts.
Resumo:
Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.
Resumo:
Organotin compounds are typical environmental contaminants and suspected endocrine-disrupting substances, which cause irreversible sexual abnormality in female mollusks, called "imposex". However, little is known about the capability of triorganotin compounds, such as tributyltin and triphenyltin, to cause disorders in the sexual development and reproductive functions of mammals, including humans and rodents. Moreover, these compounds can act as potential competitive inhibitors of aromatase enzyme and other steroidogenic enzymes, affecting the reproductive capacity of male and female mammals. In this review, we discuss the cellular, biochemical, and molecular mechanisms by which triorganotin compounds induce adverse effects in the mammalian reproductive function.
Resumo:
Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
Fish vaccination has been increasingly exploited as a tool to control pathogen infection. The production of immunoglobulin following vaccination might be affected by several factors such as management procedures, water temperature, and the presence of xenobiotics. In the present study, we aimed to investigate the kinetics of immunoglobulin production in silver catfish (Rhamdia quelen) inoculated with inactivated Aeromonas hydrophila and kept at two different water temperatures (17.4±0.4° or 21.3±0.3°C). The effect of a second antigen inoculation and exposure of fish to sublethal concentrations of the herbicides atrazine and glyphosate at 10% of the lethal concentration (LC50-96h) on specific serum antibodies were also investigated. Antibodies to A. hydrophila were detected as early as 7 days post-inoculation and increased steadily up to 35 days. The kinetics of antibody production were similar in fish kept at 17.4±0.4° and 21.3±0.3°C, and reinoculation of antigen at 21 days after priming failed to increase specific antibody levels. Intriguingly, we found that, in fish exposed to atrazine and glyphosate, the secretion of specific antibodies was higher than in non-exposed inoculated fish. These findings are important for the design of vaccines and vaccination strategies in Neotropical fish species. However, because atrazine and glyphosate are widespread contaminants of soil and water, their immune-stimulating effect could be harmful, in that fish living in herbicide-contaminated water might have increased concentrations of nonspecific antibodies that could mediate tissue injury.
Resumo:
Nanoscience and nanotechnology are new frontiers of this century. Their application to the agriculture and food sectors is relatively recent compared with their use in drug delivery and pharmaceuticals. Smart delivery of nutrients, bioseparation of proteins, rapid sampling of biological and chemical contaminants, and nanoencapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. In this review, some applications of nanotechnology in agro-food sector are discussed.
Resumo:
The artisanal production of cachaça, a beverage obtained by the fermentation of sugar cane juice after distillation, especially by small-sized producers, has traditionally used natural ferment ("fermento caipira") which consists of sugar cane juice with crushed corn, powdered rice, or citrus fruits. In despite of the difficulties in quality control due to the high level of contaminants and longer periods of preparation, the sensorial quality of the beverage may be attributed to the physiological activities of wild yeasts and even bacteria present during fermentation when this ferment is used. In this context, the aim here was to evaluate the microbiological (yeasts) and physicochemical characteristics of sugar cane juice extracted from different parts of three different varieties (RB72454, RB835486, and RB867515) of the cane stalk (lower, medium, and upper sections) in three harvesting periods (from May to December 2007) in an area under organic management. The juice from the upper section (from the eleventh internode to the top) of the sugar cane stalk could be indicated for the preparation of the natural ferment since it is as a source of yeasts and reducing sugars, especially the variety RB867515. Due to the seasonality, the best period for using this part of the sugar cane stalk is at the beginning of harvesting when the phenolic compounds are at low concentration, but there are higher number of Saccharomyces population and other yeast species. The high acidity in this section of the plant could result in a better control of bacterial contamination. These findings explain the traditional instructions of adding the upper sections for the preparation of natural ferment and can help its management in order to get a better performance with respect to organic cachaça production.
Resumo:
Coffee is one of the most appreciated drinks in the world. Coffee ground is obtained from the fruit of a small plant that belongs to the genus Coffea. Coffea arabica and Coffea canephora robusta are the two most commercially important species. They are more commonly known as arabica and robusta, respectively. Two-thirds of Coffea arabica plants are grown in South and Central America, and Eastern Africa - the place of origin for this coffee species. Contamination by microorganisms has been a major matter affecting coffee quality in Brazil, mainly due to the harvesting method adopted. Brazilian harvests are based on fruits collected from the ground mixed with those that fall on collection cloths. As the Bacillus cereus bacterium frequently uses the soil as its environmental reservoir, it is easily capable of becoming a contaminant. This study aimed to evaluate the contamination and potential of B. cereus enterotoxin genes encoding the HBL and NHE complexes, which were observed in strains of ground and roasted coffee samples sold in Rio de Janeiro. The PCR (Polymerase Chain Reaction) results revealed high potential of enterotoxin production in the samples. The method described by Speck (1984) was used for the isolation of contaminants. The investigation of the potential production of enterotoxins through isolates of the microorganism was performed using the B. cereus enterotoxin Reverse Passive Latex Agglutination test-kit (BCET-RPLA, Oxoid), according to the manufacturer's instructions. The potential of enterotoxin production was investigated using polymerase chain reaction (PCR) methods for hblA, hblD and hblC genes (encoding hemolysin HBL) and for nheA, nheB and nheC genes (encoding non-hemolytic enterotoxin - NHE). Of all the 17 strains, 100% were positive for at least 1 enterotoxin gene; 52.9% (9/17) were positive for the 3 genes encoding the HBL complex; 35.3% (6/17) were positive for the three NHE encoding genes; and 29.4% (5/17) were positive for all enterotoxic genes.
Resumo:
Many studies have drawn attention to the occurrence and concentration of toxic elements found in the fruiting body of mushrooms. Some edible mushroom species are known to accumulate high levels of inorganic contaminants, mainly cadmium, mercury, and lead. There are about 2,000 known edible mushroom species, but only 25 of them are cultivated and used as food. In Brazil, the most marketed and consumed mushroom species are Agaricus bisporus, known as Paris champignon, Lentinus edodes, or Shitake and Pleurotus sp, also called Shimeji or Hiratake. In this study, the concentration of cadmium was determined in Lentinus edodes mushrooms from different cities in São Paulo state and some samples imported from Japan and China. The analyses were performed by graphite furnace atomic absorption spectrometry after HNO3-H2O2 digestion. The results showed a lower concentration of Cd in the mushrooms cultivated in São Paulo (0.0079 to 0.023 mg.kg-1 in natura) than that of the mushrooms cultivated abroad (0.125 to 0.212 mg.kg-1 in natura). Although there is no tolerance limit for Cd in mushrooms in Brazil, the results show that Lentinus edodes mushrooms can be safely consumed.
Resumo:
Seventy-one samples of sugarcane spirits from small and average size stills produced in the northern and southern Minas Gerais (Brazil) were analyzed for acrolein using HPLC (High Performance Liquid Chromatography). Ethanol and copper concentrations and volatile acidity were also determined according to methods established by the Ministry of Agriculture, Livestock and Supply (MAPA). A total of 9.85% of the samples tested showed levels of acrolein above the legal limits, while the copper concentrations of 21.00% of the samples and the volatile acidity of 8.85% of the samples were higher than the limits established by the Brazilian legislation. The concentration of acrolein varied from 0 to 21.97 mg.100 mL-1 of ethanol. However, no significant difference at 5% of significance was observed between the samples produced in the northern and southern Minas Gerais. The method used for determination of acrolein in sugarcane spirits involved the formation of a derivative with 2,4-dinitrophenylhydrazine (2,4-DNPH) and subsequent analysis by HPLC.