1000 resultados para alpha antigen
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.
Resumo:
In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.
Resumo:
Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.
Resumo:
Stem cell antigen-1 (Sca-1) has been used to identify cardiac stem cells in the mouse heart. To investigate the function of Sca-1 in aging and during the cardiac adaptation to stress, we used Sca-1-deficient mice. These mice developed dilated cardiomyopathy [end-diastolic left ventricular diameter at 18 wk of age: wild-type (WT) mice, 4.2 mm ± 0.3; Sca-1-knockout (Sca-1-KO) mice, 4.6 mm ± 0.1; ejection fraction: WT mice, 51.1 ± 2.7%; Sca-1-KO mice, 42.9 ± 2.7%]. Furthermore, the hearts of mice lacking Sca-1 demonstrated exacerbated susceptibility to pressure overload [ejection fraction after transaortic constriction (TAC): WT mice, 43.5 ± 3.2%; Sca-1-KO mice, 30.8% ± 4.0] and increased apoptosis, as shown by the 2.5-fold increase in TUNEL(+) cells in Sca-1-deficient hearts under stress. Sca-1 deficiency affected primarily the nonmyocyte cell fraction. Indeed, the number of Nkx2.5(+) nonmyocyte cells, which represent a population of cardiac precursor cells (CPCs), was 2-fold smaller in Sca-1 deficient neonatal hearts. In vitro, the ability of CPCs to differentiate into cardiomyocytes was not affected by Sca-1 deletion. In contrast, these cells demonstrated unrestricted differentiation into cardiomyocytes. Interestingly, proliferation of cardiac nonmyocyte cells in response to stress, as judged by BrdU incorporation, was higher in mice lacking Sca-1 (percentages of BrdU(+) cells in the heart after TAC: WT mice, 4.4 ± 2.1%; Sca-1-KO mice, 19.3 ± 4.2%). These data demonstrate the crucial role of Sca-1 in the maintenance of cardiac integrity and suggest that Sca-1 restrains spontaneous differentiation in the precursor population. The absence of Sca-1 results in uncontrolled precursor recruitment, exhaustion of the precursor pool, and cardiac dysfunction.
Resumo:
Fluorescent activated cell sorter (FACS) analysis is useful for the detection of cellular surface antigens and intracellular proteins. We used this methodology in order to detect and quantify dengue antigens in highly susceptible cells such as clone C6/36 (Aedes albopictus) and Vero cells (green monkey kidney). Additionally, we analyzed the infection in vitro of human peripheral blood mononuclear leukocytes (PBML). FACS analysis turned out to be a reliable technique to quantify virus growth in traditional cell cultures of C6/36 as well as Vero cells. High rates of infection were achieved with a good statistical correlation between the virus amount used in infection and the percentage of dengue antigen containing cells detected in infected cultures. We also showed that human monocytes (CD14+) are preferred target cells for in vitro dengue infection among PBML. Monocytes were much less susceptible to virus infection than cell lines but they displayed dengue antigens detected by FACS five days after infection. In contrast, lymphocytes showed no differences in their profile for dengue specific immunofluorescence. Without an animal model to reproduce dengue disease, alternative assays have been sought to correlate viral virulence with clinical manifestations and disease severity. Study of in vitro interaction of virus and host cells may highlight this relationship.
Resumo:
The alpha-glycerophosphate dehydrogenase (alpha-GPDH) activity in flight muscles of Panstrongylus megistus and Triatoma sordida, vectors of Chagas disease in Brazil, was studied. Both species showed higher enzymatic activities in fliers than in non-fliers insects. T. sordida exhibited a higher proportion of flier insects than P. megistus. A possible role of alpha-GPDH on triatomines flight is discussed.
Resumo:
We have previously identified a mAb that binds to a molecule expressed preferentially on the surface of cycling thymocytes. In this study the molecule recognized by this mAb has been identified in the mouse as CD147 (basigin) by expression cloning. We show that CD147 expression correlates with cycling of immature thymocytes even in the absence of TCRbeta selection and that ligation of this molecule on immature fetal thymocytes inhibits their further development into mature T cells.
Resumo:
The low frequency of self-peptide-specific T cells in the human preimmune repertoire has so far precluded their direct evaluation. Here, we report an unexpected high frequency of T cells specific for the self-antigen Melan-A/MART-1 in CD8 single-positive thymocytes from human histocompatibility leukocyte antigen-A2 healthy individuals, which is maintained in the peripheral blood of newborns and adults. Postthymic replicative history of Melan-A/MART-1-specific CD8 T cells was independently assessed by quantifying T cell receptor excision circles and telomere length ex vivo. We provide direct evidence that the large T cell pool specific for the self-antigen Melan-A/MART-1 is mostly generated by thymic output of a high number of precursors. This represents the only known naive self-peptide-specific T cell repertoire directly accessible in humans.
Resumo:
The prevalence of antibodies to hepatitis B core antigen in 552 prime blood donors was of 9.4%. The majority (71.2%) has antibodies to hepatitis B surface antigen. The hepatitis B surface antigen was present in 0.7%, all of them antibodies to hepatitis B core antigen positive.
Resumo:
Pro-inflammatory cytokines are believed to play an important role in the pathogenesis of dengue infection. This study reports cytokine levels in a total of 54 patients examined in Recife, State of Pernambuco, Brazil. Five out of eight patients who had hemorrhagic manifestations presented tumor necrosis factor-alpha (TNF-alpha) levels in sera which were statistically higher than those recorded for controls. In contrast, only one out of 16 patients with mild manifestations had elevated TNF-alpha levels. The levels of interleukin-6 (IL), IL-1beta tested in 24 samples and IL-12 in 30 samples were not significantly increased. Interferon-g was present in 10 out of 30 patients with dengue. The data support the concept that the increased level of TNF-alpha is related to the severity of the disease. Soluble TNF receptor p75 was found in most patients but it is unlikely to be related to severity since it was found with an equivalent frequency and levels in 15 patients with dengue fever and another 15 with dengue hemorrhagic fever.
Resumo:
Cryptosporidium parvum oocysts are the infective stages responsible for transmission and survival of the organism in the environment. In the present work we show that the oocyst wall, far from being a static structure, is able to incorporate antigens by a mechanism involving vesicle fusion with the wall, and the incorporation of the antigen to the outer oocyst wall. Using immunoelectron microscopy we show that the antigen recognized by a monoclonal antibody used for diagnosis of cryptosporidiosis (Merifluor®, Meridian Diagnostic Inc.) could be found associated with vesicles in the space between the sporozoites and the oocysts wall, and incorporated to the outer oocyst wall by an unknown mechanism.
Resumo:
An enzyme-linked immunosorbent assay was standardized for the detection of cryptococcal antigen in serum and cerebrospinal fluid. The system was evaluated in clinical samples from patients infected by human immunodeficiency virus with and without previous cryptococcosis diagnosis. The evaluated system is highly sensitive and specific, and when it was compared with latex agglutination there were not significant differences. A standard curve with purified Cryptococcus neoformans antigen was settled down for the antigen quantification in positive samples.
Resumo:
Interferon-alpha is used in antiviral therapy in humans, mainly for viral hepatitis B and C. An anti-fibrotic effect of interferon has been postulated even in the absence of anti-viral response, which suggests that interferon directly inhibits fibrogenesis. Rats infected with the helminth Capillaria hepatica regularly develop diffuse septal fibrosis of the liver, which terminates in cirrhosis 40 days after inoculation. The aim of this study was to test the anti-fibrotic effect of interferon in this experimental model. Evaluation of fibrosis was made by three separate methods: semi-quantitative histology, computerized morphometry and hydroxyproline measurements. Treatment with interferon-alpha proved to inhibit the development of fibrosis in this model, especially when doses of 500,000 and 800,000 IU were used for 60 days. Besides confirming the anti-fibrotic potential of interferon-alpha on a non-viral new experimental model of hepatic fibrosis, a clear-cut dose-dependent effect was observed.
Resumo:
α-glycerophosphate dehydrogenase (α-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.