992 resultados para algorithm Context
Resumo:
BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.
Resumo:
El llibre gira entorn de l’origen del drama com a espectacle. Fa una recerca de les arrels del gènere dramàtic tant a Egipte com a Grècia per observar-ne el context d’origen. Es constata que la música, el teatre i la dansa es vinculaven directament amb els primers drames sacres. Les experiències escèniques egípcies són comparades amb les incipients experiències teatrals gregues, que desembocarien en el naixement de la tragèdia. En aquest bressol, les figures d’Osiris i Dionís fonamenten el relat mític de les primeres representacions teatrals, on es produeix una connexió entre les pràctiques rituals, l'ús del mite com a expressió d'una conducta i la codificació dels seus continguts en un llenguatge escènic. També s’aborden les circumstàncies que van portar les experiències teatrals d'aquestes dues civilitzacions per camins diferents i van permetre assentar les bases del teatre occidental.
Resumo:
After antigen driven activationnaïve CD8 T cells develop intocytolytic effector cells and subsequentlyinto memory cells. The molecularinteractions orchestrating Tcell activation are complex and we sofar have a limited understanding howindividual signals impact the Tcell response.Using OT-1 TCR transgeniccells and Listeria monocytogenesstrains expressing a set of altered peptideligands (APL) for the OT-1 TCRwe have recently studied how thelevel of TCR stimulation impacts theT cell response in vivo. We therebyobserved that even very low levels ofTCR stimulation are sufficient forfunctional effector and memoryT celldifferentiation. In order to addresshow much further the level of TCRstimulation can be reduced until the Tcells do not become activated anymore,we generated additional OT-1APL expressing Listeria strains. TheAPLused in our present study cover arange of potency down to the level ofpositive selection. Using all our APLListeria strains we can demonstratethat the threshold of peripheral T cellactivation is above the level of positiveselection but far below the levelthat is thought to be required for negativeselection. Furthermore, we characterizedthe thresholds of activatingmemory T cells and found them intrinsicallyto be very similar to thoseof naïve T cells. However, we observedthat T cell competition at thelevel of antigen presenting cells criticallyraises the activation threshold ofmemory CD8 T cells. Taken togetherour data indicate that the threshold foractivating T cells critically dependson the context and the environment inwhich T cells respond to antigen.
Resumo:
En aquest document es pretén estudiar de la viabilitat econòmica de la implantació d’una planta de piròlisi per a la producció de biochar o char en un context local i comarcal. La biomassa és una font d’energia que genera uns rendiments energètics prou interesants i d’una manera respectuosa amb el medi ambient. Així doncs, la teòrica planta utilitzarà biomassa que, a traves del tractament termoquímic de la piròlisi, ens generarà uns productes que són d’utilitat per l’obtenció d’energia d’una manera respectuosa amb el medi ambient. Abans de fer l’anàlisi econòmic, hi ha una explicació extensa dels processos termoquímics, com són la piròlisi, la gasificació i la torrefacció. Posteriorment, es du a terme una revisió de l’estat actual de les tecnologies de conversió de biomassa a Catalunya i finalment es realitza un inventari i anàlisi dels usos de la biomassa a Catalunya, en el qual es parla principalment de l’estella el pèl·let, així com també de la seva producció, consum i exportació. El nostre anàlisi econòmic de la planta de processament de biomassa es durà a terme a nivell local, és a dir en un municipi, i també a nivell comarcal a Catalunya. A partir del processament de biomassa per mitja de la piròlisi, obtindrem uns productes, entre els quals el biochar, que serà un dels productes finals per poder vendre. L’altre producte serà el pèl·let de biochar, que l’obtindrem a través del procés de pel·letització. Aquest procés ens permetrà densificar el mateix biochar i obtenir-ne pèl·lets amb un poder calorífic superior, com també el seu possible preu de venda final. En aquest anàlisi econòmic plantejarem diferents escenaris tant a nivell local com comarcal, és a dir, farem variar diferents paràmetres de la planta, com poden ser els dies, les hores de treball, el sou dels treballadors, l’existència de procés de pel·letització...per veure la viabilitat del nostre projecte. Aquesta viabilitat la mesurarem amb diferents Índexs, entre els quals hi ha l’Índex de Rendibilitat, que ens determinarà si el projecte és possible si el seu valor és més gran a 1.
Resumo:
El present article se centra en la situació del professorat d'Educació Física i les seves necessitats formatives per actuar adequadament en entorns d'escola multicultural. Amb aquesta finalitat es presenta la importància de l'educació física com a agent socialitzador per a l'alumnat immigrant, les diferents tendències de les investigacions específiques sobre formació del professorat d'Educació Física en temes d'immigració, i les dades obtingudes a través d'una investigació específica realitzada amb una mostra de 230 centres escolars de tot Catalunya. Com a aspectes més remarcables, cal assenyalar que encara que l'educació física i l'esport poden representar un espai de trobada molt valuós per a la interculturalitat, és important no deixar de banda una educació orientada cap a la convivència, i que la formació del professorat sigui coherent amb les necessitats reals que s'observen en i des dels centres escolars.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.