991 resultados para agonista PPAR-alfa
Resumo:
BACKGROUND & AIMS: Hepatitis C virus (HCV) induces chronic infection in 50% to 80% of infected persons; approximately 50% of these do not respond to therapy. We performed a genome-wide association study to screen for host genetic determinants of HCV persistence and response to therapy. METHODS: The analysis included 1362 individuals: 1015 with chronic hepatitis C and 347 who spontaneously cleared the virus (448 were coinfected with human immunodeficiency virus [HIV]). Responses to pegylated interferon alfa and ribavirin were assessed in 465 individuals. Associations between more than 500,000 single nucleotide polymorphisms (SNPs) and outcomes were assessed by multivariate logistic regression. RESULTS: Chronic hepatitis C was associated with SNPs in the IL28B locus, which encodes the antiviral cytokine interferon lambda. The rs8099917 minor allele was associated with progression to chronic HCV infection (odds ratio [OR], 2.31; 95% confidence interval [CI], 1.74-3.06; P = 6.07 x 10(-9)). The association was observed in HCV mono-infected (OR, 2.49; 95% CI, 1.64-3.79; P = 1.96 x 10(-5)) and HCV/HIV coinfected individuals (OR, 2.16; 95% CI, 1.47-3.18; P = 8.24 x 10(-5)). rs8099917 was also associated with failure to respond to therapy (OR, 5.19; 95% CI, 2.90-9.30; P = 3.11 x 10(-8)), with the strongest effects in patients with HCV genotype 1 or 4. This risk allele was identified in 24% of individuals with spontaneous HCV clearance, 32% of chronically infected patients who responded to therapy, and 58% who did not respond (P = 3.2 x 10(-10)). Resequencing of IL28B identified distinct haplotypes that were associated with the clinical phenotype. CONCLUSIONS: The association of the IL28B locus with natural and treatment-associated control of HCV indicates the importance of innate immunity and interferon lambda in the pathogenesis of HCV infection.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Resumo:
As propriedades larvicidas de 34 extratos, provenientes de 29 vegetais, foram testados em larvas de Aedes fluviatilis (Lutz) (Diptera: Culicidae) nas concentrações de 100, 10 e 1 ppm. 26,5% dos exames utilizados, reduziram significamente a sobrevida larvária (alfa = 0,05), quando empregados na concentração de 100 ppm (Anacardium occidentale, Agave americana, Allium sativum, Coriandrum sativum, Nerium oleander, Spatodea campanulata, Tibouchina scrobiculata e Vernonia salzmanni). O ácido anacárdio (A. occidentale) mostrou-se larvicida na concentração de 10 ppm e o extrato bruto de A. sativum foi eficaz contra as larvas na concentração de 1 ppm.
Resumo:
Estudamos 59 Escherichia coli uropatogênicas (ECUP) obtidas de pacientes com infecção urinária e 30 E. coli originárias das fezes de indivíduos normais. Cada amostra originou-se de um paciente ou controle. Verificamos que 44% e 3,3% respectivamente eram hemolíticas em meio sólido segundo a origem. Apenas 15% das ECUP hemolíticas produziram alfa-hemolisina, isoladamente ou em associação com ß-hemolisina. A alfa-hemolisina correspondeu a 92% das amostras com atividade hemolítica. Não encontramos correlação entre títulos de alfa-hemolisina e o sítio de origem das ECUP (infecção alta ou baixa). Em 71% das ECUP e 30% das E. coli fecais detectamos a produção de citotoxina com ação citocida para linhagens celulares epitelióides como Vero, He-La e Hep-2 e pouco ativa para fibroblastos de embrião de galinha. A produção desta citotoxina não apresenta correlação com a síntese de hemolisinas. Não verificamos associação entre títulos citotóxicos e origem das ECUP. Certas características biológicas desta citotoxina como a resposta morfológica que determina nas células, o aumento dos títulos citotóxicos com o tempo, sua atividade citocida irreversível e sua termolabilidade sugerem analogia com a Verotoxina (VT) de E. coli. As células afetadas pela citoxina inicialmente mostram aspecto estrelado, tornam-se arredondadas e finalmente desprendem-se do seu suporte. É sugerido que a produção de citotoxina por E. coli aderidas às mucosas do trato urinário possa contribuir para a agressão ao uroepitélio.
Resumo:
Several larval and pupal products of Aedes fluviatilis (Lutz) were tested for their influence on the oviposition behaviour of females of the same species. Significant (alfa = 0,05) atractiveness was shown by: larval water, previously containing 5 to 15 larvae/1,5 ml; larval water, preserved up to 38 days; evaporate and reconstructed larval water extracts up to 2 years after production and water filtered through fresh or dried ground larvae. hexanic larval water extracts and water filtered through fresh or dired ground pupae did not influence oviposition.
Resumo:
As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARalpha ligand. Using the steroid oxysterol 7alpha-hydroxylase cytochrome P4507b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggered the interaction of PPARalpha with GA-binding protein alpha (GABPalpha) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.
Resumo:
Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.
Resumo:
Proyecto de investigación realizado a partir de una estancia en la University of California, Davis, Estados Unidos, entre octubre y desembre del 2007. Clostridium perfringens (C. perfringens) tipo C causa enteritis necrotizante en humanos y enterotoxemias en animales domésticos. Esta bacteria produce beta toxina (CPB), alfa toxina (CPA) y perfringolisina (PFO) durante la fase logarítimca de crecimiento. En nuestro estudio se evaluó la relación entre CPB y la virulencia del aislamiento CN3685 de Cl. perfringens tipo C en un modelo caprino con inoculación intraduodenal. De manera similar a la infección natural por C. perfringens tipo C, el cultivo vegetativo del tipo salvaje de CN3685 provocó dolor abdominal, diarrea hemorrágica, enteritis necrotizante, colitis, edema pulmonar, hidropericardio y muerte en 2 cabritos, a las 24 horas postinoculación. Por otro lado, mediante tecnología Targe Tron® se prepararon mutantes isogénicos carentes de toxina CPB, los cuales fueron inoculados siguiendo el modelo anteriormente descrito. Los resultados mostraron que estos mutantes carecían de todo tipo de virulencia, ya que no se observaron signos clínicos durante las primeras 24 h postinoculación ni tampoco lesiones macroscópicas ni histopatológicas. Posteriormente se desarrolló un modelo experimental similar a los anteriores, en los que se había repuesto la capacidad de producción de CPB en los mutantes. Los dos animales inoculados con estos mutantes complementarios presentaron signos clínicos y lesiones similares a las observadas en el caso del tipo salvaje. Estos resultados muestran que la toxina CPB es necesaria y suficiente para inducir la enfermedad causada por CN3685. Esto a su vez, demuestra la importancia de este tipo de toxina en la patogénesis de C. perfringems tìpo C.
Resumo:
Rationale: Peroxisome proliferator activated receptor (PPAR)-beta/delta is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-beta/delta in sepsis is unknown. Objectives: We investigated the role of PPAR-beta/delta in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Methods: Wild-type (WT) and PPAR-beta/delta knockout (1(0) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-beta/delta agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-beta/delta antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. Measurements and Main Results: In PPAR-beta/delta KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3 beta; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-kappa B and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-beta/delta antagonist GSK0660. Conclusions: PPAR-beta/delta protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3 beta and NF-kappa B.
Resumo:
En 1923, Ramón Plá i Armengol (1880-1958) fundó el Instituto Ravetllat-Pla para la comercialización y producción de dos productos antituberculosos (Hemo-Antitoxina y Suero Ravetllat-Pla) fundamentados en una teoría heterodoxa postulada por el veterinario Joaquim Ravetllat i Estech (1871-1923). A través del instituto creó una gran red internacional científico-comercial principalmente en Latinoamérica. Plá i Armengol fue doctor en medicina y participó activamente en la lucha antituberculosa en Cataluña sin dejar de lado su militancia socialista. A través de estos dos productos, logró crear un mercado que se sustentaba en una teoría heterodoxa que integraban sus principios e ideología.
Resumo:
Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.
Resumo:
The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.
Resumo:
The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.