942 resultados para aerospace propulsion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: Dispersion quality and macro-mechanical properties Nanomechanical properties at the surface and tensile properties CNC diameter and interphase thickness Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intent of the work presented in this thesis is to show that relativistic perturbations should be considered in the same manner as well known perturbations currently taken into account in planet-satellite systems. It is also the aim of this research to show that relativistic perturbations are comparable to standard perturbations in speciffc force magnitude and effects. This work would have been regarded as little more then a curiosity to most engineers until recent advancements in space propulsion methods { e.g. the creation of a artiffcial neutron stars, light sails, and continuous propulsion techniques. These cutting-edge technologies have the potential to thrust the human race into interstellar, and hopefully intergalactic, travel in the not so distant future. The relativistic perturbations were simulated on two orbit cases: (1) a general orbit and (2) a Molniya type orbit. The simulations were completed using Matlab's ODE45 integration scheme. The methods used to organize, execute, and analyze these simulations are explained in detail. The results of the simulations are presented in graphical and statistical form. The simulation data reveals that the speciffc forces that arise from the relativistic perturbations do manifest as variations in the classical orbital elements. It is also apparent from the simulated data that the speciffc forces do exhibit similar magnitudes and effects that materialize from commonly considered perturbations that are used in trajectory design, optimization, and maintenance. Due to the similarities in behavior of relativistic versus non-relativistic perturbations, a case is made for the development of a fully relativistic formulation for the trajectory design and trajectory optimization problems. This new framework would afford the possibility of illuminating new more optimal solutions to the aforementioned problems that do not arise in current formulations. This type of reformulation has already showed promise when the previously unknown Space Superhighways arose as a optimal solution when classical astrodynamics was reformulated using geometric mechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method and results were compared to conventional electrostatic double probe measurements performed at the same thruster conditions. Electron temperature was found to range from approximately 1 – 40 eV and density ranged from approximately 1.0 x 1017 m-3 to 1.3 x 1018 m-3 over discharge voltages from 250 to 450 V and mass flow rates of 40 to 80 SCCM using xenon propellant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating alone). The remaining heat needed to achieve enough vapor flow to sustain thruster discharge came from a counter-wound resistive heater located behind the anode. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. Using this long-duration method, stable operation was achieved with heater powers as low as 6% of the total discharge power. Using the thermal mass flow control system the thruster operated stably enough and long enough that performance measurements could be obtained and compared to the performance of the thruster using xenon propellant. It was found that when operated with magnesium, the thruster has thrust ranging from 34 mN at 200 V to 39 mN at 300 V with 1.7 mg/s of propellant. It was found to have 27 mN of thrust at 300 V using 1.0 mg/s of propellant. The thrust-to-power ratio ranged from 24 mN/kW at 200 V to 18 mN/kW at 300 volts. The specific impulse was 2000 s at 200 V and upwards of 2700 s at 300 V. The anode efficiency was found to be ~23% using magnesium, which is substantially lower than the 40% anode efficiency of xenon at approximately equivalent molar flow rates. Measurements in the plasma plume of the thruster—operated using magnesium and xenon propellants—were obtained using a Faraday probe to measure off-axis current distribution, a retarding potential analyzer to measure ion energy, and a double Langmuir probe to measure plasma density, electron temperature, and plasma potential. Additionally, the off axis current distributions and ion energy distributions were compared to measurements made in krypton and bismuth plasmas obtained in previous studies of the same thruster. Comparisons showed that magnesium had the largest beam divergence of the four propellants while the others had similar divergence. The comparisons also showed that magnesium and krypton both had very low voltage utilization compared to xenon and bismuth. It is likely that the differences in plume structure are due to the atomic differences between the propellants; the ionization mean free path goes down with increasing atomic mass. Magnesium and krypton have long ionization mean free paths and therefore require physically larger thruster dimensions for efficient thruster operation and would benefit from magnetic shielding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrospray source has been developed using a novel new fluid that is both magnetic and conductive. Unlike conventional electrospray sources that required microfabricated structures to support the fluid to be electrosprayed, this new electrospray fluid utilizes the Rosensweig instability to create the structures in the magnetic fluid when an external magnetic field was applied. Application of an external electric field caused these magnetic fluid structures to spray. These fluid based structures were found to spray at a lower onset voltage than was predicted for electrospray sources with solid structures of similar geometry. These fluid based structures were also found to be resilient to damage, unlike the solid structures found in traditional electrospray sources. Further, experimental studies of magnetic fluids in non-uniform magnetic fields were conducted. The modes of Rosensweig instabilities have been studied in-depth when created by uniform magnetic fields, but little to no studies have been performed on Rosensweig instabilities formed due to non-uniform magnetic fields. The measured spacing of the cone-like structures of ferrofluid, in a non-uniform magnetic field, were found to agree with a proposed theoretical model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Revitalizing manufacturing in the US is a hot topic, and the $1B National Network for Manufacturing Innovation (NNMI) has three new centers focused on metal casting. For structural applications, magnesium casting, structural die-cast alloys, austempered ductile and compacted graphite cast iron, and high strength steel promise dramatic weight reduction and improved performance. Recent experiments and modeling at UAB focus on the development of such new materials and processing routes. A study of the rare earth content in an aerospace magnesium alloy is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additive Manufacturing durch Aufschmelzen von Metallpulvern hat sich auf breiter Front als Herstellverfahren, auch für Endprodukte, etabliert. Besonders für die Variante des Selective Laser Melting (SLM) sind Anwendungen in der Zahntechnik bereits weit verbreitet und der Einsatz in sensitiven Branchen wie der Luftfahrt ist in greifbare Nähe gerückt. Deshalb werden auch vermehrt Anstrengungen unternommen, um bisher nicht verarbeitete Materialien zu qualifizieren. Dies sind vorzugsweise Nicht-Eisen- und Edelmetalle, die sowohl eine sehr hohe Reflektivität als auch eine sehr gute Wärmeleitfähigkeit aufweisen – beides Eigenschaften, die die Beherrschung des Laser-Schmelzprozesses erschweren und nur kleine Prozessfenster zulassen. Die Arbeitsgruppe SLM des Lehr- und Forschungsgebietes Hochleistungsverfahren der Fertigungstechnik hat sich unter der Randbedingung einer kleinen und mit geringer Laserleistung ausgestatteten SLM Maschine der Aufgabe gewidmet und am Beispiel von Silber die Parameterfelder für Einzelspuren und wenig komplexe Geometrien systematisch untersucht. Die Arbeiten wurden von FEM Simulationen begleitet und durch metallographische Untersuchungen verifiziert. Die Ergebnisse bilden die Grundlage zur schnellen Parameterfindung bei komplexen Geometrien und bei Veränderungen der Zusammensetzung, wie sie bei zukünftigen Legierungen zu erwarten sind. Die Ergebnisse werden exemplarisch auf unterschiedliche Geometrien angewandt und entsprechende Bauteile gezeigt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additive manufacturing by melting of metal powders is an innovative method to create one-offs and customized parts. Branches like dentistry, aerospace engineering and tool making were indicated and the manufacturing methods are established. Besides all the advantages, like freedom of design, manufacturing without a tool and the reduction of time-to-market, there are however some disadvantages, such as reproducibility or the surface quality. The surface quality strongly depends on the orientation of the component in the building chamber, the process parameters which are laser power and exposure time, but also on the so-called “hatch”-strategy, which includes the way the laser exposes the solid areas. This paper deals with the investigation and characterization of the surface quality of generated parts produced by SLM. Main process parameters including part orientation, part size and hatch strategies are investigated and monitored. The outcome is a recommendation of suitable hatch strategies depending on desired part properties. This includes metered values and takes into account process stability and reproducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Informatik- und insbesondere Programmierunterricht sind heute ein wichtiger Bestandteil der schulischen Ausbildung. Vereinfachte Entwicklungsumgebungen, die auf die Abstraktion typischer Programmierkonzepte in Form von grafischen Bausteinen setzen, unterstützen diesen Trend. Zusätzliche Attraktivität wird durch die Verwendung exotischer Laufzeitumgebungen (z. B. Roboter) geschaffen. Die in diesem Paper vorgestellte Plattform “ScratchDrone” führt ergänzend zu diesen Angeboten eine moderne Flugdrohne als innovative Laufzeitumgebung für Scratch-Programme ein. Die Programmierung kann dabei dank modularer Systemarchitektur auf verschiedenen Abstraktionsebenen erfolgen, abhängig vom Lernfortschritt der Schüler. Kombiniert mit einem mehrstufigen didaktischen Modell, der Herausforderung der Bewegung im 3D-Raum sowie der natürlichen menschlichen Faszination für das Fliegen wird so eine hohe Lernmotivation bei jungen Programmieranfängern erreicht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a study of Lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues--mining, material-processing, and manufacturing, and the human elements of physiology, behavior and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune dysfunction is encountered during spaceflight. Various aspects of spaceflight, including microgravity, cosmic radiation, and both physiological and psychological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. Clinostatic RWV bioreactors that simulate aspects of microgravity were used to analyze the response of human PBMC to polyclonal and oligoclonal activation. PHA responsiveness in the RWV bioreactor was almost completely diminished. IL-2 and IFN-$\gamma$ secretion was reduced whereas IL-1$\beta$ and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Antigen specific T cell activation, including the mixed-lymphocyte reaction, tetanus toxoid responsiveness, and Borrelia activation of a specific T cell line, was also suppressed in the RWV bioreactor.^ The role of altered culture conditions in the suppression of T cell activation were considered. Potential reduced cell-cell and cell-substratum interactions in the RWV bioreactor may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions was not affected. Furthermore, increasing cell-population density, and therefore cell-cell interactions, in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Finally, activation of purified T cells with crosslinked CD2/CD28 or CD3/CD28 antibody pairs, which does not require costimulation through cell-cell contact, was completely suppressed in the RWV bioreactor suggesting a defect internal to the T cell.^ Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation in simulated microgravity, there is a specific dysfunction within the T cell involving the signaling pathways upstream of PKC activation. ^