910 resultados para active and exo-site binding
Resumo:
(Monostromatic green algae (Ulvales, Chlorophyta) of São Paulo and Paraná states (Brazil): distribution, growth, and reproduction). Culture studies were used for taxa identification and to understand aspects of the biology and physiology of monostromatic green blades growing in various sites along the coast of São Paulo state (23º30'-25ºl2'S, 45º10'-48ºW) and one site in Paraná state (25º35'S, 48º21'W), southeast and south Brazil, respectively. Possible variations of the growth rate, age of reproduction and life history were tested under different conditions of temperature, salinity and day length. Two species were found: Ulvaria oxysperma (Kützing) Bliding and Monostroma sp. The first one has been previously reported for many temperate and tropical estuaries around the world. Green monostromatic blades with the same life-history and ontogeny as Monostroma sp. have been reported so far only for the tropical coast of Brazil. Species are distinct in their ontogeny of the thallus (constant under different conditions) and limiting temperatures of survival. U. oxysperma grows and reproduces from 10 to 25ºC and dies when maintained at 30ºC; Monostroma sp. does not reproduce at 15ºC and survives at 30ºC. The different salinities and day lengths that were tested had no significant effect on either species.
Resumo:
Erythroxylum ovalifolium is a woody shrub widespread in the "restinga", i.e. the open scrub vegetation of the Brazilian coastal sandy plains. We examined leaf anatomy variation of this species both within populations and between populations of three "restingas" in the state of Rio de Janeiro. Sites were ca.100 km far from each other and differed in regard to rainfall and vegetation structure: a dry, open site; a wet, dense site and an intermediate one. Microhabitats within sites were: (i) exposed to full irradiance, outside vegetation islands; (ii) partially exposed to full irradiance, at the border of vegetation islands; (iii) shaded, inside vegetation islands. Leaf anatomy parameters were measured for five leaves collected in each of five plants per microhabitat, in each population; they were thickness of the leaf blade, of the palisade and spongy parenchyma, and of the adaxial and abaxial epidermis. Leaves from the dry, open site had narrower abaxial epidermis and a smaller contribution of spongy parenchyma to total leaf blade thickeness than the other two sites, which we attributed to water stress. Adaxial epidermis and leaf are thicker in more exposed microhabitats (i and ii, above), irrespective of site. We proposed that between-site anatomical variation in traits related to water stress, and within-site anatomical variation in traits related to light-use are indicative of ecological plasticity and might help explain the high abundance of E. ovalifolium in the studied populations and along the State of Rio de Janeiro coast.
Resumo:
In the present investigation we studied the fusogenic process developed by influenza A, B and C viruses on cell surfaces and different factors associated with virus and cell membrane structures. The biological activity of purified virus strains was evaluated in hemagglutination, sialidase and fusion assays. Hemolysis by influenza A, B and C viruses ranging from 77.4 to 97.2%, from 20.0 to 65.0%, from 0.2 to 93.7% and from 9.0 to 76.1% was observed when human, chicken, rabbit and monkey erythrocytes, respectively, were tested at pH 5.5. At this pH, low hemolysis indexes for influenza A, B and C viruses were observed if horse erythrocytes were used as target cells for the fusion process, which could be explained by an inefficient receptor binding activity of influenza on N-glycolyl sialic acids. Differences in hemagglutinin receptor binding activity due to its specificity to N-acetyl or N-glycolyl cell surface oligosaccharides, density of these cellular receptors and level of negative charges on the cell surface may possibly explain these results, showing influence on the sialidase activity and the fusogenic process. Comparative analysis showed a lack of dependence between the sialidase and fusion activities developed by influenza B viruses. Influenza A viruses at low sialidase titers (<2) also exhibited clearly low hemolysis at pH 5.5 (15.8%), while influenza B viruses with similarly low sialidase titers showed highly variable hemolysis indexes (0.2 to 78.0%). These results support the idea that different virus and cell-associated factors such as those presented above have a significant effect on the multifactorial fusion process
Resumo:
It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.
Resumo:
Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.
Resumo:
Consumers’ increasing awareness of healthiness and sustainability of food presents a great challenge to food industry to develop healthier, biologically active and sustainable food products. Bioactive peptides derived from food proteins are known to possess various biological activities. Among the activities, the most widely studied are antioxidant activities and angiotensin I converting enzyme (ACE) inhibitory activity related to blood pressure regulation and antihypertensive effects. Meanwhile, vast amounts of byproducts with high protein content are produced in food industry, for example potato and rapeseed industries. The utilization of these by-products could be enhanced by using them as a raw material for bioactive peptides. The objective of the present study was to investigate the production of bioactive peptides with ACE inhibitory and antioxidant properties from rapeseed and potato proteins. Enzymatic hydrolysis and fermentation were utilized for peptide production, ultrafiltration and solid-phase extraction were used to concentrate the active peptides, the peptides were fractionated with liquid chromatographic processes, and the peptides with the highest ACE inhibitory capacities were putified and analyzed with Maldi-Tof/Tof to identify the active peptide sequences. The bioavailability of the ACE inhibitory peptides was elucidated with an in vitro digestion model and the antihypertensive effects in vivo of rapeseed peptide concentrates were investigated with a preventive premise in 2K1C rats. The results showed that rapeseed and potato proteins are rich sources of ACE inhibitory and antioxidant peptides. Enzymatic hydrolysis released the peptides effectively whereas fermentation produced lower activities.The native enzymes of potato were also able to release ACE inhibitory peptides from potato proteins without the addition of exogenous enzymes. The rapeseed peptide concentrate was capable of preventing the development of hypertension in vivo in 2K1C rats, but the quality of rapeseed meal used as raw material was found to affect considerably the antihypertensive effects and the composition of the peptide fraction.
Resumo:
The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.
Resumo:
Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6) mesangial cells (MC) and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05) in the cell lysate (43.5 ± 5.7 ng h-1 10(6) cells) than in the culture medium (12.5 ± 2.5 ng h-1 10(6) cells). Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 ± 3.1 and 3.9 ± 0.9 ng h-1 10(6) cells). Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.
Resumo:
The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.
Resumo:
The effects of sleep disorders on the quality of life (QOL) have been documented in the literature. Excessive sleepiness and altered circadian rhythms may negatively affect ability to learn, employment, and interpersonal relations, and directly degrade QOL. The objective of the present study was to evaluate the impact of obstructive sleep apnea syndrome of varying severity on QOL. The study was conducted on 1892 patients aged 18 years or older referred by a physician to the Sleep Institute, São Paulo, with complaints related to apnea (snoring, excessive daytime sleepiness, hyperarousal, and fatigue). They were submitted to overnight polysomnography for the diagnosis of sleep disorders from August 2005 through April 2006. The patients completed the Epworth Sleepiness Scale and QOL SF-36 sleep questionnaires. They were classified as non-physically active and physically active and not-sleepy and sleepy and the results of polysomnography were analyzed on the basis of the apnea hypopnea index (AHI). The apneic subjects showed a reduction in QOL which was proportional to severity. There was a significant decrease in all domains (physical functioning, role physical problems, bodily pain, general health perceptions, vitality, social functioning, emotional problems, general mental health) for apneics with AHI >30, who generally were sleepy and did not participate in physical activities (P < 0.05). The present study provides evidence that the impact of sleep disorders on QOL in apneics is not limited to excessive daytime sleepiness and that physical activity can contribute to reducing the symptoms. Thus, exercise should be considered as an adjunct interventional strategy in the management of obstructive sleep apnea syndrome.
Resumo:
Our objective was to determine whether the presence of the human leukocyte antigen HLA-DRB1 locus is associated with production of anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) and to what extent they are associated with increased susceptibility to and severity of rheumatoid arthritis (RA) in Egyptian patients. Twenty-nine RA patients gave informed consent to participate in a case-control study that was approved by the Ain Shams University Medical Ethics Committee. RA disease activity and severity were determined using the simplified disease activity index and Larsen scores, respectively. We used a wide scale national study on the pattern of HLA typing in normal Egyptians as a control study. Anti-CCP Abs and HLA-DRB1 typing were determined for all subjects. The alleles most strongly associated with RA were HLA-DRB1 [*01 , *04 and *06] (41.4%). RA patients with serum anti-CCP Ab titers above 60 U/mL had a significantly higher frequency of HLA-DRB1*01 (58.3%) and HLA-DRB1*04 alleles (83.3%). Significant positive correlations were found between serum and synovial anti-CCP Ab titer, RA disease activity, and severity (r = 0.87, 0.66 and 0.63, respectively; P < 0.05). HLA-DRB1 SE+ alleles [*01 and *04] were highly expressed among Egyptian RA patients. The presence of these alleles was associated with higher anti-CCP Ab titer, active and severe RA disease. Early determination of HLA-DRB1 SE+ alleles and serum anti-CCP Ab could facilitate the prediction of the clinical course and prognosis of RA when first evaluated leading to better disease control.
Resumo:
Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.