832 resultados para accuracy analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on an assumption that a steady state exists in the full-memory multidestination automatic repeat request (ARQ) scheme, we propose a novel analytical method called steady-state function method (SSFM), to evaluate the performance of the scheme with any size of receiver buffer. For a wide range of system parameters, SSFM has higher accuracy on throughput estimation as compared to the conventional analytical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focal points Over a six-week period in January and February 2002, 2ml samples were removed from all neonatal PN bags dispensed Samples were submitted for analysis of sodium, potassium and magnesium in triplicate by the hospital's clinical chemistry department using a Vitros Codac 950AT, dry slide, automated analyser Only 19.3, 7.1 and 30.4 per cent of measured sodium, potassium and magnesium concentrations respectively deviated by £5 per cent from stated bag concentrations The results indicate that it is possible that some electrolyte concentrations included in neonatal PN vary significantly from stated values

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the effects of circularity, comorbidity, prevalence and presentation variation on the accuracy of differential diagnoses made in optometric primary care using a modified form of naïve Bayesian sequential analysis. No such investigation has ever been reported before. Data were collected for 1422 cases seen over one year. Positive test outcomes were recorded for case history (ethnicity, age, symptoms and ocular and medical history) and clinical signs in relation to each diagnosis. For this reason only positive likelihood ratios were used for this modified form of Bayesian analysis that was carried out with Laplacian correction and Chi-square filtration. Accuracy was expressed as the percentage of cases for which the diagnoses made by the clinician appeared at the top of a list generated by Bayesian analysis. Preliminary analyses were carried out on 10 diagnoses and 15 test outcomes. Accuracy of 100% was achieved in the absence of presentation variation but dropped by 6% when variation existed. Circularity artificially elevated accuracy by 0.5%. Surprisingly, removal of Chi-square filtering increased accuracy by 0.4%. Decision tree analysis showed that accuracy was influenced primarily by prevalence followed by presentation variation and comorbidity. Analysis of 35 diagnoses and 105 test outcomes followed. This explored the use of positive likelihood ratios, derived from the case history, to recommend signs to look for. Accuracy of 72% was achieved when all clinical signs were entered. The drop in accuracy, compared to the preliminary analysis, was attributed to the fact that some diagnoses lacked strong diagnostic signs; the accuracy increased by 1% when only recommended signs were entered. Chi-square filtering improved recommended test selection. Decision tree analysis showed that accuracy again influenced primarily by prevalence, followed by comorbidity and presentation variation. Future work will explore the use of likelihood ratios based on positive and negative test findings prior to considering naïve Bayesian analysis as a form of artificial intelligence in optometric practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significance: Oxidized phospholipids are now well-recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, both from animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods have enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy and cystic fibrosis, and offer potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To evaluate OneTouch® Verio™ test strip performance at hypoglycaemic blood glucose (BG) levels (<3.9mmol/L [<70mg/dL]) at seven clinical studies. Methods: Trained clinical staff performed duplicate capillary BG monitoring system tests on 700 individuals with type 1 and type 2 diabetes using blood from a single fingerstick lancing. BG reference values were obtained using a YSI 2300 STAT™ Glucose Analyzer. The number and percentage of BG values within ±0.83. mmol/L (±15. mg/dL) and ±0.56. mmol/L (±10. mg/dL) were calculated at BG concentrations of <3.9. mmol/L (<70. mg/dL), <3.3. mmol/L (<60. mg/dL), and <2.8. mmol/L (<50. mg/dL). Results: At BG concentrations <3.9. mmol/L (<70. mg/dL), 674/674 (100%) of meter results were within ±0.83. mmol/L (±15. mg/dL) and 666/674 (98.8%) were within ±0.56. mmol/L (±10. mg/dL) of reference values. At BG concentrations <3.3. mmol/L (<60. mg/dL), and <2.8. mmol/L (<50. mg/dL), 358/358 (100%) and 270/270 (100%) were within ±0.56. mmol/L (±10. mg/dL) of reference values, respectively. Conclusion: In this analysis of data from seven independent studies, OneTouch Verio test strips provide highly accurate results at hypoglycaemic BG levels. © 2012 Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Location estimation is important for wireless sensor network (WSN) applications. In this paper we propose a Cramer-Rao Bound (CRB) based analytical approach for two centralized multi-hop localization algorithms to get insights into the error performance and its sensitivity to the distance measurement error, anchor node density and placement. The location estimation performance is compared with four distributed multi-hop localization algorithms by simulation to evaluate the efficiency of the proposed analytical approach. The numerical results demonstrate the complex tradeoff between the centralized and distributed localization algorithms on accuracy, complexity and communication overhead. Based on this analysis, an efficient and scalable performance evaluation tool can be designed for localization algorithms in large scale WSNs, where simulation-based evaluation approaches are impractical. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words' sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.