795 resultados para Wireless Networks
Resumo:
Currently, wireless technology is revolutionizing the way we share information and communicate. The demands for mobility have made wireless technology the primary source for voice communication. Code-division multiple-access (CDMA) is a very popular spread spectrum application due to its claims of low transmission power, higher system capacity, ability to mitigate multipath fading and user interference. In that case, frequency-hopping code-division multiple access (FH-CDMA) has received considerable attention over the past few years. This technique will allow a better performance over a fading channel, message privacy, and immunity to narrowband interference. This paper addresses the characteristics of FH-CDMA in WPAN networks, with an emphasis on frequency-hopped Bluetooth systems. A performance evaluation of FH-CDMA is discussed and simulated. The analysis shows the interaction between the designed parameters and their effect on the network system. Most specifically, the FH-CDMA scheme provides frequency and temporal diversity to combat the effects of interference.
Resumo:
In this paper a Markov chain based analytical model is proposed to evaluate the slotted CSMA/CA algorithm specified in the MAC layer of IEEE 802.15.4 standard. The analytical model consists of two two-dimensional Markov chains, used to model the state transition of an 802.15.4 device, during the periods of a transmission and between two consecutive frame transmissions, respectively. By introducing the two Markov chains a small number of Markov states are required and the scalability of the analytical model is improved. The analytical model is used to investigate the impact of the CSMA/CA parameters, the number of contending devices, and the data frame size on the network performance in terms of throughput and energy efficiency. It is shown by simulations that the proposed analytical model can accurately predict the performance of slotted CSMA/CA algorithm for uplink, downlink and bi-direction traffic, with both acknowledgement and non-acknowledgement modes.
Resumo:
Dedicated short range communications (DSRC) has been regarded as one of the most promising technologies to provide robust communications for large scale vehicle networks. It is designed to support both road safety and commercial applications. Road safety applications will require reliable and timely wireless communications. However, as the medium access control (MAC) layer of DSRC is based on the IEEE 802.11 distributed coordination function (DCF), it is well known that the random channel access based MAC cannot provide guaranteed quality of services (QoS). It is very important to understand the quantitative performance of DSRC, in order to make better decisions on its adoption, control, adaptation, and improvement. In this paper, we propose an analytic model to evaluate the DSRC-based inter-vehicle communication. We investigate the impacts of the channel access parameters associated with the different services including arbitration inter-frame space (AIFS) and contention window (CW). Based on the proposed model, we analyze the successful message delivery ratio and channel service delay for broadcast messages. The proposed analytical model can provide a convenient tool to evaluate the inter-vehicle safety applications and analyze the suitability of DSRC for road safety applications.
Resumo:
This paper investigates the random channel access mechanism specified in the IEEE 802.16 standard for the uplink traffic in a Point-to-MultiPoint (PMP) network architecture. An analytical model is proposed to study the impacts of the channel access parameters, bandwidth configuration and piggyback policy on the performance. The impacts of physical burst profile and non-saturated network traffic are also taken into account in the model. Simulations validate the proposed analytical model. It is observed that the bandwidth utilization can be improved if the bandwidth for random channel access can be properly configured according to the channel access parameters, piggyback policy and network traffic.
Resumo:
IEEE 802.16 standards have been developed as one of the technical solutions for broadband wireless access systems. It has high data rate, large network coverage, flexible QoS schemes and cheap network deployment. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, contention based bandwidth request scheme can be used to indicate bandwidth demands to the base station for the non-real-time polling and besteffort services. These two services are used for most application with unknown traffic characteristics. Due to the diverse QoS requirements of those applications, service differentiation (SD) is anticipated over the contention based bandwidth request scheme. In this paper we investigate the SD with the bandwidth request scheme by means of assigning different channel access parameters and bandwidth allocation priorities. The effectiveness of the differentiation schemes are evaluated by simulations. It is observed that the initial backoff window can be efficient in SD, and if combined with the bandwidth allocation priority, the SD performances will be better. ©2008 IEEE.
Resumo:
Link adaptation is a critical component of IEEE 802.11 systems, which adapts transmission rates to dynamic wireless channel conditions. In this paper we investigate a general cross-layer link adaptation algorithm which jointly considers the physical layer link quality and random channel access at the MAC layer. An analytic model is proposed for the link adaptation algorithm. The underlying wireless channel is modeled with a multiple state discrete time Markov chain. Compared with the pure link quality based link adaptation algorithm, the proposed cross-layer algorithm can achieve considerable performance gains of up to 20%.
Resumo:
In this paper, a congestion control mechanism is presented for multiservice wireless OFDMA networks. The revenue rate and the user SNR's are used to partition the bandwidth in accordance with a complete partitioning structure. Moreover, through the use of our scheme the QoS of any ongoing connections can be satisfied. Results show that the revenue rate plays an important role in prioritizing the different services. © 2013 Springer Science+Business Media New York.
Resumo:
IEEE 802.15.4 standard has been proposed for low power wireless personal area networks. It can be used as an important component in machine to machine (M2M) networks for data collection, monitoring and controlling functions. With an increasing number of machine devices enabled by M2M technology and equipped with 802.15.4 radios, it is likely that multiple 802.15.4 networks may be deployed closely, for example, to collect data for smart metering at residential or enterprise areas. In such scenarios, supporting reliable communications for monitoring and controlling applications is a big challenge. The problem becomes more severe due to the potential hidden terminals when the operations of multiple 802.15.4 networks are uncoordinated. In this paper, we investigate this problem from three typical scenarios and propose an analytic model to reveal how performance of coexisting 802.15.4 networks may be affected by uncoordinated operations under these scenarios. Simulations will be used to validate the analytic model. It is observed that uncoordinated operations may lead to a significant degradation of system performance in M2M applications. With the proposed analytic model, we also investigate the performance limits of the 802.15.4 networks, and the conditions under which coordinated operations may be required to support M2M applications. © 2012 Springer Science + Business Media, LLC.
Resumo:
IEEE 802.16 network is widely viewed as a strong candidate solution for broadband wireless access systems. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, bandwidth request scheme can be used to indicate and request bandwidth demands to the base station for different services. Due to the diverse QoS requirements of the applications, service differentiation (SD) is desirable for the bandwidth request scheme. In this paper, we propose several SD approaches. The approaches are based on the contention-based bandwidth request scheme and achieved by the means of assigning different channel access parameters and/or bandwidth allocation priorities to different services. Additionally, we propose effective analytical model to study the impacts of the SD approaches, which can be used for the configuration and optimization of the SD services. It is observed from simulations that the analytical model has high accuracy. Service can be efficiently differentiated with initial backoff window in terms of throughput and channel access delay. Moreover, the service differentiation can be improved if combined with the bandwidth allocation priority approach without adverse impacts on the overall system throughput.
Resumo:
Wireless-communication technology can be used to improve road safety and to provide Internet access inside vehicles. This paper proposes a cross-layer protocol called coordinated external peer communication (CEPEC) for Internet-access services and peer communications for vehicular networks. We assume that IEEE 802.16 base stations (BS) are installed along highways and that the same air interface is equipped in vehicles. Certain vehicles locating outside of the limited coverage of their nearest BSs can still get access to the Internet via a multihop route to their BSs. For Internet-access services, the objective of CEPEC is to increase the end-to-end throughput while providing a fairness guarantee in bandwidth usage among road segments. To achieve this goal, the road is logically partitioned into segments of equal length. A relaying head is selected in each segment that performs both local-packet collecting and aggregated packets relaying. The simulation results have shown that the proposed CEPEC protocol provides higher throughput with guaranteed fairness in multihop data delivery in vehicular networks when compared with the purely IEEE 802.16-based protocol.
Resumo:
Cellular networks have been widely used to support many new audio-and video-based multimedia applications. The demand for higher data rate and diverse services has driven the research on multihop cellular networks (MCNs). With its ad hoc network features, an MCN can offer many additional advantages, such as increased network throughput, scalability and coverage. However, providing ad hoc capability to MCNs is challenging as it may require proper wireless interfaces. In this article, the architecture of IEEE 802.16 network interface to provide ad hoc capability for MCNs is investigated, with its focus on the IEEE 802.16 mesh networking and scheduling. Several distributed routing algorithms based on network entry mechanism are studied and compared with a centralized routing algorithm. It is observed from the simulation results that 802.16 mesh networks have limitations on providing sufficient bandwidth for the traffic from the cellular base stations when a cellular network size is relatively large. © 2007 IEEE.
Resumo:
In this letter, we propose an analytical approach to model uplink intercell interference (ICI) in hexagonal grid based orthogonal frequency division multiple access (OFMDA) cellular networks. The key idea is that the uplink ICI from individual cells is approximated with a lognormal distribution with statistical parameters being determined analytically. Accordingly, the aggregated uplink ICI is approximated with another lognormal distribution and its statistical parameters can be determined from those of individual cells using Fenton-Wilkson method. Analytic expressions of uplink ICI are derived with two traditional frequency reuse schemes, namely integer frequency reuse schemes with factor 1 (IFR-1) and factor 3 (IFR-3). Uplink fractional power control and lognormal shadowing are modeled. System performances in terms of signal to interference plus noise ratio (SINR) and spectrum efficiency are also derived. The proposed model has been validated by simulations. © 2013 IEEE.