761 resultados para Wireless Mesh Networks. IEEE 802.11s. Testbeds. Management
Resumo:
Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.
Resumo:
Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology offer the potential for low cost deployment and maintenance compared with conventional wired sensor networks, enabling effective and efficient condition monitoring of aged civil engineering infrastructure. We will address wireless propagation for a below to above ground scenario where one of the wireless nodes is located in a below ground fire hydrant chamber to permit monitoring of the local water distribution network. Frequency Diversity (FD) is one method that can be used to combat the damaging effects of multipath fading and so improve the reliability of radio links. However, no quantitative investigation concerning the potential performance gains from the use of FD at 2.4GHz is available for the outlined scenario. In this paper, we try to answer this question by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor nodes. These measurement results are also compared with those obtained from simulations that employ our Modified 2D Finite-Difference Time-Domain (FDTD) approach. ©2009 IEEE.
Resumo:
Enhancing the handover process in broadband wireless communication deployment has traditionally motivated many research initiatives. In a high-speed railway domain, the challenge is even greater. Owing to the long distances covered, the mobile node gets involved in a compulsory sequence of handover processes. Consequently, poor performance during the execution of these handover processes significantly degrades the global end-to-end performance. This article proposes a new handover strategy for the railway domain: the RMPA handover, a Reliable Mobility Pattern Aware IEEE 802.16 handover strategy "customized" for a high-speed mobility scenario. The stringent high mobility feature is balanced with three other positive features in a high-speed context: mobility pattern awareness, different sources for location discovery techniques, and a previously known traffic data profile. To the best of the authors' knowledge, there is no IEEE 802.16 handover scheme that simultaneously covers the optimization of the handover process itself and the efficient timing of the handover process. Our strategy covers both areas of research while providing a cost-effective and standards-based solution. To schedule the handover process efficiently, the RMPA strategy makes use of a context aware handover policy; that is, a handover policy based on the mobile node mobility pattern, the time required to perform the handover, the neighboring network conditions, the data traffic profile, the received power signal, and current location and speed information of the train. Our proposal merges all these variables in a cross layer interaction in the handover policy engine. It also enhances the handover process itself by establishing the values for the set of handover configuration parameters and mechanisms of the handover process. RMPA is a cost-effective strategy because compatibility with standards-based equipment is guaranteed. The major contributions of the RMPA handover are in areas that have been left open to the handover designer's discretion. Our simulation analysis validates the RMPA handover decision rules and design choices. Our results supporting a high-demand video application in the uplink stream show a significant improvement in the end-to-end quality of service parameters, including end-to-end delay (22%) and jitter (80%), when compared with a policy based on signal-to-noise-ratio information.
Resumo:
We report a fibre-optic wireless distribution system, which allows antenna-remoting of a dual-service IEEE 802.11b/g WLAN operating at 2.4GHz up to 700m over low-bandwidth 62.5/125μm MMF using highly linear uncooled directly modulated laser diodes. © 2004 Optical Society of America.
Resumo:
The current congestion-oriented design of TCP hinders its ability to perform well in hybrid wireless/wired networks. We propose a new improvement on TCP NewReno (NewReno-FF) using a new loss labeling technique to discriminate wireless from congestion losses. The proposed technique is based on the estimation of average and variance of the round trip time using a filter cal led Flip Flop filter that is augmented with history information. We show the comparative performance of TCP NewReno, NewReno-FF, and TCP Westwood through extensive simulations. We study the fundamental gains and limits using TCP NewReno with varying Loss Labeling accuracy (NewReno-LL) as a benchmark. Lastly our investigation opens up important research directions. First, there is a need for a finer grained classification of losses (even within congestion and wireless losses) for TCP in heterogeneous networks. Second, it is essential to develop an appropriate control strategy for recovery after the correct classification of a packet loss.
Resumo:
In this paper, a prototype of miniaturized, low power, bi-directional wireless sensor node for wireless sensor networks (WSN) was designed for doors and windows building monitoring. The capacitive pressure sensors have been developed particularly for such application, where packaging size and minimization of the power requirements of the sensors are the major drivers. The capacitive pressure sensors have been fabricated using a 2.4 mum thick strain compensated heavily boron doped SiGeB diaphragm is presented. In order to integrate the sensors with the wireless module, the sensor dice was wire bonded onto TO package using chip on board (COB) technology. The telemetric link and its capabilities to send information for longer range have been significantly improved using a new design and optimization process. The simulation tool employed for this work was the Designerreg tool from Ansoft Corporation.
Resumo:
Complex systems, from environmental behaviour to electronics reliability, can now be monitored with Wireless Sensor Networks (WSN), where multiple environmental sensors are deployed in remote locations. This ensures aggregation and reading of data, at lower cost and lower power consumption. Because miniaturisation of the sensing system is hampered by the fact that discrete sensors and electronics consume board area, the development of MEMS sensors offers a promising solution. At Tyndall, the fabrication flow of multiple sensors has been made compatible with CMOS circuitry to further reduce size and cost. An ideal platform on which to host these MEMS environmental sensors is the Tyndall modular wireless mote. This paper describes the development and test of the latest sensors incorporating temperature, humidity, corrosion, and gas. It demonstrates their deployment on the Tyndall platform, allowing real-time readings, data aggregation and cross-correlation capabilities. It also presents the design of the next generation sensing platform using the novel 10mm wireless cube developed by Tyndall.
Resumo:
In this paper, The radio Frequency (RF) Monitoring and Measurement of the Environmental Research Institute (ERI) located in Cork city will be monitored and analyzed in both the Zigbee (2.44 GHz) and the industrial, scientific and medical (ISM 433 MHz). The main objective of this survey is to confirm what the noise and interferences threat signals exist in these bands. It was agreed that the surveys would be carried out in 5 different rooms and areas that are candidates for the Wireless Sensors deployments. Based on the carried on study, A Zigbee standard Wireless Sensor Network (WSN) will be developed employing a number of motes for sensing number of signals like temperature, light and humidity beside the RSSI and battery voltage monitoring. Such system will be used later on to control and improve indoor building climate at reduced costs, remove the need for cabling and both installation and operational costs are significantly reduced.
Resumo:
For many wireless sensor networks applications, indoor light energy is the only ambient energy source commonly available. Many advantages and constraints co-exist in this technology. However, relatively few indoor light powered harvesters have been presented and much research remains to be carried out on a variety of related design considerations and trade-offs. This work presents a solution using the Tyndall mote and an indoor light powered wireless sensor node. It analyses design considerations on several issues such as indoor light characteristics, solar panel component choice, maximum power point tracking, energy storage elements and the trade-offs and choices between them.
Resumo:
At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.
Resumo:
The goal of this work is to fabricate robust, highly-miniaturised, wireless sensor modules that incorporates ion-selective electrodes (ISEs). pH is one of the main parameters in assessment of the quality of our environment (water, soil) and these ISE/pH sensors will be deployed in a miniaturised, programmable modular system. The simplicity of ISEs (low costs and low power requirements) allow for the preparation of sensors that are all very similar in construction but can at the same time be easily made for variety of different environmentally important ions (i.e. heavy metals). This is important because of the increasing focus on the impact of the quality of the environment on society, both locally, and globally. The work described will contribute to a widely distributed sensor network for monitoring the quality of our environment, focused mainly on soil and water quality.
Resumo:
A comparison study was carried out between a wireless sensor node with a bare die flip-chip mounted and its reference board with a BGA packaged transceiver chip. The main focus is the return loss (S parameter S11) at the antenna connector, which was highly depended on the impedance mismatch. Modeling including the different interconnect technologies, substrate properties and passive components, was performed to simulate the system in Ansoft Designer software. Statistical methods, such as the use of standard derivation and regression, were applied to the RF performance analysis, to see the impacts of the different parameters on the return loss. Extreme value search, following on the previous analysis, can provide the parameters' values for the minimum return loss. Measurements fit the analysis and simulation well and showed a great improvement of the return loss from -5dB to -25dB for the target wireless sensor node.
Resumo:
This work presents the design and evaluation of the REAM (Remote Electricity Actuation and Monitoring) node based around the modular Tyndall Mote platform. The REAM node enables the user to remotely actuate power to a mains power extension board while sampling the current, voltage, power and power factor of the attached load. The node contains a current transformer interfaced to an Energy Metering IC which continuously samples current and voltage. These values are periodically read from the part by a PIC24 microcontroller, which calculates the RMS current and voltage, power factor and overall power. The resultant values can then be queried wirelessly employing the Tyndall 802.15.4 compliant wireless module.