931 resultados para Wetland mitigation
Resumo:
Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting innovation and discoveries by ensuring them a safe environment even in the case of very novel products. The proposed measures are not considered as constraints but as a support to their research. This methodology is being implemented at the Ecole Polytechnique de Lausanne in over 100 research labs dealing with nanomaterials. It is our opinion that it would be useful to other research and academia institutions as well. [Authors]
Resumo:
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.
Resumo:
Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.
Resumo:
The RIO’S January 2011 Quarterly Report details the economic recovery strategy in housing; business; workforce development; infrastructure investments; individual services and guidance; local economic recovery; smart planning; mitigation planning; floodplain and watershed management; floodplain mapping and quality of life. The report also includes an update of the flow of federal and state disaster recovery funding to the state, counties, cities and individuals affected by the 2008 disasters.
Resumo:
The RIO’S April 2011 Quarterly Report is the Office's final report and details the economic recovery strategy in housing; business; workforce development; infrastructure investments; individual services and guidance; local economic recovery; smart planning; mitigation planning; floodplain and watershed management; floodplain mapping and quality of life. The report also includes an update of the flow of federal and state disaster recovery funding to the state, counties, cities and individuals affected by the 2008 disasters.
Resumo:
Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.
Resumo:
In the summer of 2008, the state of Iowa suffered from a series of severe storms that produced tornadoes and heavy rainfall, which resulted in widespread flooding. The Summer Storms1 lasted from late May through mid-August, with the most intense storms occurring over a month-long period from May 25 to June 25. The Summer Storms exacted a major human and economic toll on Iowa, resulting in 18 fatalities and 106 injuries, forcing the evacuation of approximately 38,000 Iowans, and impacting 21,000 housing units. Iowa’s public and private sectors suffered significant monetary damages. Eighty-six of the ninety-nine counties in the state were included in the Governor’s disaster declarations. Presidential disaster declarations made residents in 84 counties eligible for Public Assistance and 78 counties for Individual Assistance. The Rebuild Iowa Advisory Commission estimated $798.3 million in damages to publicly owned buildings and infrastructure, including damages of $53 million to public transportation and $342 million to public utilities. The 2008 Summer Storms presented unique coordination challenges for the Iowa Homeland Security and Emergency Management Division (HSEMD) and the State Emergency Operations Center (SEOC). These challenges arose from three interrelated factors: the large number of local jurisdictions and areas impacted, the prolonged period of time that response operations were conducted, and the increasing complexity of overall response operations. These events caused the SEOC to coordinate response, mitigation, recovery, and preparedness operations simultaneously. HSEMD and the SEOC implemented a variety of measures to enhance their ability to coordinate operations and assistance to localities. The SEOC expanded its organizational structure, implemented innovative techniques, and incorporated new partners into its activities. These steps enabled HSEMD and SEOC to coordinate operations more effectively, which undoubtedly helped save lives and property, while mitigating the effects of the 2008 Summer Storms.
Resumo:
Mitigation pays. It includes any activities that prevent an emergency, reduce the chance of an emergency happening, or lessen the damaging effects of unavoidable emergencies. Investing in mitigation steps now such as constructing barriers such as levees and purchasing flood insurance will help reduce the amount of structural damage to your home and financial loss from building and crop damage should a flood or flash flood occur.
Resumo:
The application of organic wastes to agricultural soils is not risk-free and can affect soil invertebrates. Ecotoxicological tests based on the behavioral avoidance of earthworms and springtails were performed to evaluate effects of different fertilization strategies on soil quality and habitat function for soil organisms. These tests were performed in soils treated with: i) slurry and chemical fertilizers, according to the conventional fertilization management of the region, ii) conventional fertilization + sludge and iii) unfertilized reference soil. Both fertilization strategies contributed to soil acidity mitigation and caused no increase in soil heavy metal content. Avoidance test results showed no negative effects of these strategies on soil organisms, compared with the reference soil. However, results of the two fertilization managements differed: Springtails did not avoid soils fertilized with dairy sludge in any of the tested combinations. Earthworms avoided soils treated with sludge as of May 2004 (DS1), when compared with conventional fertilization. Possibly, the behavioral avoidance of earthworms is more sensitive to soil properties (other than texture, organic matter and heavy metal content) than springtails
Resumo:
The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practice to help practitioners access the latest knowledge and implement proven techniques. Emphasizing that water is the common factor in most premature joint deterioration, this guide describes various types of joint deterioration that can occur. Some distresses are caused by improper joint detailing or construction, and others can be attributed to inadequate materials or proportioning. D cracking is a form of joint distress that results from the use of poor-quality aggregates. A particular focus in this guide is joint distress due to freeze-thaw action. Numerous factors are at play in the occurrence of this distress, including the increased use of a variety of deicing chemicals and application strategies. Finally, this guide provides recommendations for minimizing the potential for joint deterioration, along with recommendations for mitigation practices to slow or stop the progress of joint deterioration.
Resumo:
Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.
Resumo:
The Rebuild Iowa Office (RIO) continues to coordinate the state‘s recovery effort from the storms, tornadoes and floods of 2008. Much has been accomplished since the Office‘s last quarterly report was issued in July 2010. State funding has been disbursed to help Iowans with unmet needs and housing. Local governments and entities are utilizing millions of federal dollars so thousands of disaster-impacted homeowners can be offered a buyout. More infrastructure projects are under construction and new neighborhoods are being built with mitigation efforts in mind. However, as Iowa continues to celebrate many successes along the road to recovery, it must also address the numerous challenges that are encountered along the path. Recovering from the state‘s largest disaster must be looked at as a marathon, not a sprint. Over the past three months, the RIO has especially remained focused on helping small business owners impacted by the 2008 disasters. Many disaster-affected businesses have reopened their doors, however their debt load continues to be overwhelming and many still struggle with the timeliness of the disbursement of funds. This report describes how programs and recent modifications are working to assist recovering businesses. This report contains updates on housing progress while outlining the complexities behind certain programs and the bottlenecks communities are facing due to strict federal guidelines for implementation. This following pages also describe how Iowa is implementing Smart Planning principles, publicizing flood awareness through outreach efforts and preparing a blueprint for the state to follow when future disasters occur. As always, the RIO recognizes and thanks the countless leaders and front-line workers from local, regional, state and federal government, businesses, non-profit organizations and private citizens that have provided input, support and leadership. Their dedication to Iowa‘s disaster recovery has made the plans and projects on the following pages possible.
Resumo:
The RIO’S quarterly Report details the economic recovery strategy in housing; business; workforce development; infrastructure investments; individual services and guidance; local economic recovery; smart growth; mitigation planning; floodplain and watershed management; floodplain mapping; quality of life; and emergency management.The report also includes an updated selection of charts showing the flow of federal and state disaster recovery funding to the state, counties, cities and individuals affected by the 2008 disasters.
Resumo:
The RIO’S quarterly Report details the economic recovery strategy in housing; business; workforce development; infrastructure investments; individual services and guidance; local economic recovery; smart growth; mitigation planning; floodplain and watershed management; floodplain mapping; quality of life; and emergency management.The report also includes an updated selection of charts showing the flow of federal and state disaster recovery funding to the state, counties, cities and individuals affected by the 2008 disasters.
Resumo:
The RIO’S quarterly Report details the economic recovery strategy in housing; business; workforce development; infrastructure investments; individual services and guidance; local economic recovery; smart growth; mitigation planning; floodplain and watershed management; floodplain mapping; quality of life; and emergency management.The report also includes an updated selection of charts showing the flow of federal and state disaster recovery funding to the state, counties, cities and individuals affected by the 2008 disasters.