853 resultados para Wetland ecosystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diet of Common Chiffchaffs Phylloscopus collybita wintering in a Mediterranean wetland (El Hondo Natural Park, SE Spain) was studied by analysing the gizzard content of 17 individuals that died accidentally when trapped for ringing. Prey availability was assessed via water-trap sampling over two winters. The bulk of the diet was composed of midges (Chironomidae), which were found in all the gizzards and represented approximately 95% of the prey. Brachycera flies were one of the most captured taxa in the water-traps but represented less than 0.5% of the total number of prey consumed. Compositional analysis revealed very strong prey selection, with Chiffchaffs selecting clumped and less mobile prey, such as chironomids, and avoiding abundant but fast-escaping prey, such as Brachycera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “El Hondo Nature Park” is mainly composed of a series of irrigation channels and water reservoirs, subjected to various regimes of management as well as reed and vegetation control, thus creating a great variety of habitats and situations. To determine the influence of these habitats and management regimes on the local bird community, a set of characteristics of these channels and their surrounding area were analysed with a Correspondence Analysis (CA). The degree of reed development in channels and the presence in the surroundings of orchards and other reed formations were the most decisive factors to explain the probability of occurrence of reed birds and waterbirds, as well as bird species richness and abundance. Other bird species were not directly influenced by channel variables, but only by those of surrounding land uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The extraction of salt from seawater by means of coastal solar salterns is a very well-described process. Moreover, the characterization of these environments from ecological, biochemical and microbiological perspectives has become a key focus for many research groups all over the world over the last 20 years. In countries such as Spain, there are several examples of coastal solar salterns (mainly on the Mediterranean coast) and inland solar salterns, from which sodium chloride is obtained for human consumption. However, studies focused on the characterization of inland solar salterns are scarce and both the archaeal diversity and the plant communities inhabiting these environments remain poorly described. Results. Two of the inland solar salterns (termed Redonda and Penalva), located in the Alto Vinalopó Valley (Alicante, Spain), were characterized regarding their geological and physico-chemical characteristics and their archaeal and botanical biodiversity. A preliminary eukaryotic diversity survey was also performed using saline water. The chemical characterization of the brine has revealed that the salted groundwater extracted to fill these inland solar salterns is thalassohaline. The plant communities living in this environment are dominated by Sarcocornia fruticosa (L.) A.J. Scott, Arthrocnemum macrostachyum (Moris) K. Koch, Suaeda vera Forsk. ex Gmelin (Amaranthaceae) and several species of Limonium (Mill) and Tamarix (L). Archaeal diversity was analyzed and compared by polymerase chain reaction (PCR)-based molecular phylogenetic techniques. Most of the sequences recovered from environmental DNA samples are affiliated with haloarchaeal genera such as Haloarcula, Halorubrum, Haloquadratum and Halobacterium, and with an unclassified member of the Halobacteriaceae. The eukaryote Dunaliella was also present in the samples. Conclusions. To our knowledge, this study constitutes the first analysis centered on inland solar salterns located in the southeastern region of Spain. The results obtained revealed that the salt deposits of this region have marine origins. Plant communities typical of salt marshes are present in this ecosystem and members of the Halobacteriaceae family can be easily detected in the microbial populations of these habitats. Possible origins of the haloarchaea detected in this study are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steep environmental gradients of mountain ecosystems over short distances reflect large gradients of several climatic parameters and hence provide excellent possibilities for ecological research on the effects of environmental change. To gain a better understanding of the dynamics of abiotic and biotic parameters of mountain ecosystems, long-term records are required since permanent plots in mountain regions cover in the best case about 50 - 70 years. In order to extend investigations of ecological dynamics beyond these temporal limitations of permanent plots, paleoecological approaches can be used if the sampling resolution can be adapted to ecological research questions, e.g. a sample every 10 years. Paleoecological studies in mountain ecosystems can provide new ecological insights through the combination of different spatial and temporal scales. [f we thus improve our understanding of processes across both steep environmental gradients and different time scales, we may be able to better estimate ecosystem responses to current and future environmental change (Ammann et al. 1993; Lotter et al. 1997). The complexity of ecological interactions in mountain regions forces us to concentrate on a number of sub-systems - without losing sight of the wider context. Here, we summarize a few case studies on the effects of Holocene climate change and disturbance on the vegetation of the Western Alps. To categorize the main response modes of vegetation to climatic change and disturbance in the Alps we use three classes of ecological behaviour: "resilience", "adjustment", and "vulnerability", We assume a resilient (or elastic) behaviour if vegetation is able to recover to its former state, regaining important ecosystem characteristics, such as floristic composition, biodiversity, species abundances, and biomass (e.g. Küttel 1990; Aber and Melillo 199 1). Conversely, vegetation displacements may occur in response to climatic change and/or disturbance. In some cases, this may culminate in irreversible large-scale processes such as species and/or community extinctions. Such drastic developments indicate high ecosystem vulnerability (or inelasticity or instability, for detailed definitions see Küttel 1990; Aber and Melillo 199 1) to climatic change and/or disturbance. In this sense, the "vulnerability" (or instability) of an ecosystem is expressed by the degree of failure to recover to the original state before disturbance and/or climatic change. Between these two extremes (resilience vs. vulnerability), ecosystem adjustments to climatic change and/or disturbance may occur, including the appearance of new and/or the disappearance of old species. The term "adjustment" is hence used to indicate the response of vegetational communities, which adapted to new environmental conditions without losing their main character. For forest ecosystems, we assume vegetational adjustments (rather than vulnerability) if the dominant (or co-dominant) tree species are not outnumbered or replaced by formerly unimportant plant species or new invaders. Adaptation as a genetic process is not discussed here and will require additional pbylogeographical studies (that incorporate the analysis of ancient DNA) in order to fully understand the distributions of ecotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographies.