852 resultados para Wet Porous Filtration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officials during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44-56 mm), cuttlebones of CO2-incubated individuals accreted 22-55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2- exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 lm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 lm. Interestingly, the incorporation of non-acidsoluble organic matrix (chitin) in the cuttlebones of CO2- exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officials, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 -] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officials is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short-term experimental manipulations, with few studies of long-term ambient change. We investigated changes in above- and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980-1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short-term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.