927 resultados para Weathering.
Resumo:
Osmium (Os) isotope analyses of bulk sediments from the South Atlantic, Equatorial Pacific, and the Italian Apennines yield a well-dated and coherent pattern of 187Os/188Os variation from the late Eocene to the early Oligocene. The resulting composite record demonstrates the global character of two prominent features of the low-resolution LL44-GPC3 Os isotope record (Pegram and Turekian, 1999, doi:10.1016/S0016-7037(99)00308-7). These are: (1) a pronounced minimum in 187Os/188Os (0.22-0.27) in the late Eocene, between 34 and 34.5 Ma, and (2) a subsequent rapid increase in 187Os/188Os, to approximately 0.6 by 32 Ma. An ultramafic weathering event and an increased influx of extraterrestrial particles to the Earth are discussed as alternative explanations for the late Eocene 187Os/188Os minimum. Comparison of the 187Os/188Os to benthic foraminiferal oxygen isotope records demonstrates that the nearly three-fold increase in 187Os/188Os from the late Eocene minimum coincides with the growth and decay of the first large ice sheet of the Oligocene (Oi1 (Miller et al., 1991, doi:10.1029/90JB02015)). The fine structure of the Os isotope record indicates that enhanced release of radiogenic Os, unrelated to the recovery from late Eocene minimum, lagged the initiation of the Oi1 event by roughly 0.5 Myr. This record, in conjunction with weathering studies in modern glacial soils (Blum, in: W.F. Ruddiman (Ed.), Tectonic Uplift and Climate Change, Plenum Press, New York, 1997, pp. 259-288; Peucker-Ehrenbrink and Blum, 1998, doi:10.1016/S0016-7037(98)00227-0), suggests that exposure of freshly eroded material during deglaciation following Oi1 enhanced chemical weathering rates, and may have contributed to ice sheet stabilization by drawing down atmospheric carbon dioxide. The improved temporal resolution and age control of the refined Eocene-Oligocene Os isotope record also makes it possible to illustrate the late Eocene Os isotope excursion as a tool for global correlation of marine sediments.
Resumo:
87Sr/86Sr data of belemnites are presented from a Middle Jurassic-Early Cretaceous succession from the Falkland Plateau (Deep Sea Drilling Project Sites 511 and 330) that was deposited in a periodically anoxic, semi-enclosed shallow water basin. Diagenetically screened strontium-isotope values of 0.706789 rise to 0.707044 before increasing sharply to 0.707428 in the uppermost part of the sampled succession. Comparison with published strontium calibration curves suggests that the oldest samples were Callovian to Oxfordian in age, whilst the remainder of the Jurassic part of the succession consisted of Kimmeridgian and Early Tithonian age sediments. The nannofossil, dinoflagellate and molluscan assemblages provide comparable age determinations. The strontium-isotope analysis of the youngest belemnites points to a Hauterivian-Barremian age, whilst age interpretations based upon the fauna provide a wide age range from the Barremian to early Albian. Strontium-isotope stratigraphy of this succession hence offers increased age resolution providing data regarding the timing of episodes of bottom water anoxia which have been recorded throughout the South Atlantic Basin. Well-preserved belemnite specimens display an oxygen-isotope range between +0.08 and -2.22? (PDB, Peedee belemnite international standard) and a carbon-isotope range from +2.35 to -1.33? (PDB). Delta13C values become increasingly negative through the Late Jurassic-Early Cretaceous and in concert with the 87Sr/86Sr data reveal a trend that could be accounted for by increasing levels of weathering and erosion. The oxygen-isotope data if interpreted in terms of palaeotemperature are consistent with warm palaeotemperatures in the Kimmeridgian and slightly cooler temperatures for the Tithonian and Early Cretaceous parts of the succession. The proposed relative Kimmeridgian warmth (based upon strontium-isotope age assignments) is thus in good agreement with other published palaeotemperature records.
Resumo:
Oceanic Anoxic Event 2 (OAE2), spanning the Cenomanian-Turonian boundary (CTB), represents one of the largest perturbations in the global carbon cycle in the last 100 Myr. The d13Ccarb, d13Corg, and d18O chemostratigraphy of a black shale-bearing CTB succession in the Vocontian Basin of France is described and correlated at high resolution to the European CTB reference section at Eastbourne, England, and to successions in Germany, the equatorial and midlatitude proto-North Atlantic, and the U.S. Western Interior Seaway (WIS). Delta13C (offset between d13Ccarb and d13Corg) is shown to be a good pCO2 proxy that is consistent with pCO2 records obtained using biomarker d13C data from Atlantic black shales and leaf stomata data from WIS sections. Boreal chalk d18O records show sea surface temperature (SST) changes that closely follow the Delta13C pCO2 proxy and confirm TEX86 results from deep ocean sites. Rising pCO2 and SST during the Late Cenomanian is attributed to volcanic degassing; pCO2 and SST maxima occurred at the onset of black shale deposition, followed by falling pCO2 and cooling due to carbon sequestration by marine organic productivity and preservation, and increased silicate weathering. A marked pCO2 minimum (~25% fall) occurred with a SST minimum (Plenus Cold Event) showing >4°C of cooling in ~40 kyr. Renewed increases in pCO2, SST, and d13C during latest Cenomanian black shale deposition suggest that a continuing volcanogenic CO2 flux overrode further drawdown effects. Maximum pCO2 and SST followed the end of OAE2, associated with a falling nutrient supply during the Early Turonian eustatic highstand.
Resumo:
The Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) is associated with abrupt climate change, carbon cycle perturbation, ocean acidification, as well as biogeographic shifts in marine and terrestrial biota that were largely reversed as the climatic transient waned. We report a clear exception to the behavior of the PETM as a reversing climatic transient in the eastern North Atlantic (Deep-Sea Drilling Project Site 401, Bay of Biscay) where the PETM initiates a greatly prolonged environmental change compared to other places on Earth where records exist. The observed environmental perturbation extended well past the d13C recovery phase and up to 650 kyr after the PETM onset according to our extraterrestrial 3He-based age-model. We observe a strong decoupling of planktic foraminiferal d18O and Mg/Ca values during the PETM d13C recovery phase, which in combination with results from helium isotopes and clay mineralogy, suggests that the PETM triggered a hydrologic change in western Europe that increased freshwater flux and the delivery of weathering products to the eastern North Atlantic. This state change persisted long after the carbon-cycle perturbation had stopped. We hypothesize that either long-lived continental drainage patterns were altered by enhanced hydrological cycling induced by the PETM, or alternatively that the climate system in the hinterland area of Site 401 was forced into a new climate state that was not easily reversed in the aftermath of the PETM.
Resumo:
Eastern Mediterranean sediments are characterized by cyclic deposition of organic-rich sediments known as sapropels. Enhanced primary productivity combined with bottom water oxygen depletion are thought to be the main drivers for sapropel deposition. We selected sapropel layers from a suite of ODP-Leg 160 cores, and applied a set of geochemical proxies to determine paleo-productivity variations, redox conditions of the water column during deposition, and provenance of detrital material. High sedimentary Ba/Al and Corg contents indicate enhanced primary production, whereas the sedimentary La/Lu ratio, points to an enhanced contribution from a North African riverine source, during sapropel formation. These features are especially pronounced on Sapropels S5 and S7, deposited during a particularly warm climatic interval. This indicates a more intense North African drainage/weathering and consequently run-off for those sapropels that have the most enhanced expression of productivity too. Correspondingly, the latter has also resulted in bottom water redox conditions that have been more severe during these sapropels than during others. Deepwater formation from Adriatic and Aegean areas, thought to be mainly controlled by sustained cooling of preconditioned surface waters, triggers the onset of bottomwater ventilation, thus sapropel duration. Our data, therefore, suggest that the intensity of sapropel formation is determined by the North African monsoonal system, whereas their duration is directed by northern borderlands climatic conditions.
Resumo:
We present new isotopic data for sedimentary planktonic foraminifera, as well as for potential water column and sedimentary sources of neodymium (Nd), which confirm that the isotopic composition of the foraminifera is the same as surface seawater and very different from deep water and sedimentary Nd. The faithfulness with which sedimentary foraminifera record the isotopic signature of surface seawater Nd is difficult to explain given their variable and high Nd/Ca ratios, ratios that are often sedimentary foraminifera, ratios that are often much higher than is plausible for direct incorporation within the calcite structure. We present further data that demonstrate a similarly large range in Nd/Ca ratios in plankton tow foraminifera, a range that may be controlled by redox conditions in the water column. Cleaning experiments reveal, in common with earlier work, that large amounts of Nd are released by cleaning with both hydrazine and diethylene triamine penta-acetic acid, but that the Nd released at each step is of surface origin. While further detailed studies are required to verify the exact location of the surface isotopic signature and the key controls on foraminiferal Nd isotope systematics, these new data place the use of planktonic foraminifera as recorders of surface water Nd isotope ratios, and thus of variations in the past supply of Nd to the oceans from the continents via weathering and erosion, on a reasonably sure footing.
Resumo:
The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.
Resumo:
The mineralogy, major and trace elements, and neodymium and strontium isotopes of surface sediments in the South China Sea (SCS) are documented with the aim of investigating their applicability in provenance tracing. The results indicate that mineralogical compositions alone do not clearly identify the sources for the bulk sediments in the SCS. The Nd isotopic compositions of the SCS sediments show a clear zonal distribution. The most negative epsilon-Neodymium values were obtained for sediments from offshore South China (-13.0 to -10.7), while those from offshore Indochina are slightly more positive (-10.7 to -9.4). The Nd isotopic compositions of the sediments from offshore Borneo are even higher, with epsilon-Neodymium ranging from -8.8 to -7.0, and the sediments offshore from the southern Philippine Arc have the most positive epsilon-Neodymium values, from -3.7 to +5.3. This zonal distribution in epsilon-Neodymium is in good agreement with the Nd isotopic compositions of the sediments supplied by river systems that drain into the corresponding regions, indicating that Nd isotopic compositions are an adequate proxy for provenance tracing of SCS sediments. Sr isotopic compositions, in contrast, can only be used to identify the sediments from offshore South China and offshore from the southern Philippine Arc, as the 87Sr/86Sr ratios of sediments from other regions overlapped. Similar zonal distributions are also apparent in a La-Th-Sc discrimination diagram. Sediments fromthewestmargin of the SCS, such as those fromBeibuwan Bay, offshore fromHainan Island, offshore from Indochina, and from the Sunda Shelf plot in the same field, while those offshore from the northeastern SCS, offshore from Borneo, and offshore from the southern Philippine Arc plot in distinct fields. Thus, the La-Th-Sc discrimination diagram, coupledwith Nd isotopes, can be used to trace the provenance of SCS sediments. Using this method, we re-assessed the provenance changes of sediments at Ocean Drilling Program (ODP) Site 1148 since the late Oligocene. The results indicate that sediments deposited after 23.8 Ma (above 455 mcd: meters composite depth) were supplied mainly from the eastern South China Block, with a negligible contribution from the interior of the South China Block. Sediments deposited before 26 Ma (beneath 477 mcd) were supplied mainly from the North Palawan Continental Terrane, which may retain the geochemical characteristics of the materials covered on the late Mesozoic granitoids along the coastal South China. For that the North Palawan Continental Terrane is presently located within the southern Philippine Arc but was located close to ODP Site 1148 in the late Oligocene. The weathering products of volcanic material associated with the extension of the SCS ocean crust also contributed to these sediments. The rapid change in sediment source at 26-23.8 Ma probably resulted from a sudden cessation of sediment supply from the North Palawan Continental Terrane. Wesuggest that the North Palawan Continental Terrane drifted southwards alongwith the extension of the SCS ocean crust during that time, and when the basin was large enough, the supply of sediment from the south to ODP Site 1148 at the north slope may have ceased.
Resumo:
High resolution records (ca. 100 kyr) of Os isotope composition (187Os/188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os/188Os excursion and confirm that the Late Eocene 187Os/ 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink (2003, doi:10.1016/S0012-821X(03)00137-7), is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os/188Os minimum can be placed at 34.5 +/- 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os/188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. +/-0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os/188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os/188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os/188Os records with high resolution benthic foraminiferal delta18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os/188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes and their effects on the marine 187Os/188Os records are obscured by recovery from the Late Eocene 187Os/188Os excursion, evidence of the global influence of glaciation on supply of Os to the ocean is robust as it has now been documented in both Pacific and Atlantic records.
Resumo:
The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.
Resumo:
An investigation of recent bottom sediments between the Cyprus Island and the Syrian seacoast during Cruise 27 of R/V Vityaz-2 (1993) gave comprehensive field data significantly complementing our understanding of the sedimentation process in this part of the Mediterranean Sea. Mineralogical and geochemical indicators testify to different input into sedimentation of the Syrian and Nile River sources. The Nile River plays a leading role in terrigenous sedimentation in the southeastern Mediterranean Sea, especially in deep-sea areas. In contrast, contribution of weathering products of basalts and ophiolites from the Syrian drainage area (hornblende, monoclinic and rhombic pyroxenes, olivine, spinel, palagonite, and epidote) are particularly detectable in sediments of the near-coast zone. During Late Quaternary contribution of terrigenous material both from the Syrian and Nile sources was irregular in time.
Resumo:
A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.
Resumo:
The clay mineral assemblages of upper Eocene to lower Miocene sediments recovered at the CIROS-1 and MSSTS-1 drill sites on the McMurdo Sound shelf, Antarctica, were analyzed in order to reconstruct the Cenozoic Antarctic paleoclimate and ice dynamics. The assemblages are dominated by smectite and illite, with minor amounts of chlorite and kaolinite. The highest smectite amounts and best smectite crystallinities occur in the upper Eocene part of CIROS-1, below 425-445 mbsf. They indicate that during their deposition, chemical weathering conditions prevailed on the nearby continent. Large parts of East Antarctica were probably ice-free at that time, but some glaciers reached the sea and contributed to the glaciomarine sedimentation. In contrast, only minor total amounts of smectite are present in Oligocene and younger sediments due to the shift to mainly physical weathering on an ice-covered Antarctic continent. However, relative smectite percentages rise to more than 60% during two late Oligocene intervals (ca. 27.5-26.2 and 25.0-24.5 Ma) and during one early Miocene interval starting at ca. 23.3 Ma. These intervals are characterized by ice masses coming probably from the south, where volcanic rocks acted as a source, as also indicated by the composition of the sand and gravel fractions. During the other intervals, the ice came from the west, where the physical erosion of basement rocks and sedimentary rocks of the Beacon Supergroup in the Transantarctic Mountains provided high illite concentrations. Because the two drill sites are only 4 km apart, their clay mineral records can be correlated. This led to a new interpretation of the Oligocene paleomagnetic data of the MSSTS-1 site and to a more detailed lithostratigraphic correlation of the Miocene parts of the cores.
Resumo:
Calcium-isotope ratios (d44/42Ca) were measured in carbonate-rich sedimentary sections deposited during Oceanic Anoxic Events 1a (Early Aptian) and 2 (Cenomanian-Turonian). In sections from Resolution Guyot, Mid-Pacific Mountains; Coppitella, Italy; and the English Chalk at Eastbourne and South Ferriby, UK, a negative excursion in d44/42Ca of ~0.20 per mil and ~0.10 per mil is observed for the two events. These d44/42Ca excursions occur at the same stratigraphic level as the carbon-isotope excursions that define the events, but do not correlate with evidence for carbonate dissolution or lithological changes. Diagenetic and temperature effects on the calcium-isotope ratios can be discounted, leaving changes in global seawater composition as the most probable explanation for d44/42Ca changes in four different carbonate sections. An oceanic box model with coupled strontium- and calcium-isotope systems indicates that a global weathering increase is likely to be the dominant driver of transient excursions in calcium-isotope ratios. The model suggests that contributions from hydrothermal activity and carbonate dissolution are too small and short-lived to affect the oceanic calcium reservoir measurably. A modelled increase in weathering flux, on the order of three times the modern flux, combined with increased hydrothermal activity due to formation of the Ontong-Java Plateau (OAE1a) and Caribbean Plateau (OAE2), can produce trends in both calcium and strontium isotopes that match the signals recorded in the carbonate sections. This study presents the first major-element record of a weathering response to Oceanic Anoxic Events.