964 resultados para Water-power.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.
Resumo:
This paper focuses on malicious workplace gossip from the perspective of those targeted by this dark form of organisational communication. Findings from a large exemplarian action research project are reported that suggest malicious gossip can be an influential form of power that strongly contributes to counterproductive organisational behaviour. The discussion draws upon the emergent themes from the research to highlight the negative consequences of malicious gossip for those targeted and their organisations, and in so doing, elaborates on the phenomenon of workplace mobbing. This research highlights the importance of recognising gossip as an effective, though dark, form of power and the value of rational discourse for improving organisational communication.
Resumo:
This article sets out to interpret the construction of truth discourse in the War of Canudos, through the classic 'Rebellion in the backland' by Euclides da Cunha. To enrich the research, the articles wrote by Cunha, while he was a war correspondent for the Estado de São Paulo newspaper, will be analyzed, too. Along with the text, the expression “truth-effects” designed by French philosopher Michel Foucault is being used. “Effects of truth” is an expression in reference to the idea of discourses being neither true nor false. In Os sertões, the effects of truth emerge from strategic power disputes amongst the Church, landowners, politicians and a seaside ruling elite that ignores the reality of the poor and forsaken hinterlands. Keywords: discourse, power, truth.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.
Resumo:
With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system
Resumo:
To cover wide range of pulsed power applications, this paper proposes a modularity concept to improve the performance and flexibility of the pulsed power supply. The proposed scheme utilizes the advantage of parallel and series configurations of flyback modules in obtaining high-voltage levels with fast rise time (dv/dt). Prototypes were implemented using 600-V insulated-gate bipolar transistor (IGBT) switches to generate up to 4-kV output pulses with 1-kHz repetition rate for experimentation. To assess the proposed modular approach for higher number of the modules, prototypes were implemented using 1700-V IGBTs switches, based on ten-series modules, and tested up to 20 kV. Conducted experimental results verified the effectiveness of the proposed method
Resumo:
The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is expected to rise. However, due to low collision frequencies it is difficult to analyze such risk in a sound statistical manner. This study aims at examining the occurrence of traffic conflicts in order to understand the characteristics of vessels involved in navigational hazards. A binomial logit model was employed to evaluate the association of vessel attributes and the kinematic conditions with conflict severity levels. Results show a positive association for vessels of small gross tonnage, overall vessel length, vessel height and draft with conflict risk. Conflicts involving a pair of dynamic vessels sailing at low speeds also have similar effects.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is likely to rise. However, due to low collision frequencies in port waters, it is difficult to analyze such risk in a sound statistical manner. A convenient approach of investigating navigational collision risk is the application of the traffic conflict techniques, which have potential to overcome the difficulty of obtaining statistical soundness. This study aims at examining port water conflicts in order to understand the characteristics of collision risk with regard to vessels involved, conflict locations, traffic and kinematic conditions. A hierarchical binomial logit model, which considers the potential correlations between observation-units, i.e., vessels, involved in the same conflicts, is employed to evaluate the association of explanatory variables with conflict severity levels. Results show higher likelihood of serious conflicts for vessels of small gross tonnage or small overall length. The probability of serious conflict also increases at locations where vessels have more varied headings, such as traffic intersections and anchorages; becoming more critical at night time. Findings from this research should assist both navigators operating in port waters as well as port authorities overseeing navigational management.
Resumo:
Habitat fragmentation as a result of urbanisation is a growing problem for native lizard species. The Eastern Water Dragon (Physignathus lesueurii) is a social arboreal agamid lizard, native to Australia. This species represents an ideal model species to investigate the effect of urbanisation because of their prominent abundance in the urban landscape. Here we describe the isolation and characterisation of a novel set of 74 di-, tri-, and tetramicrosatellites from which 18 were selected and optimised into two multiplexes. The 18 microsatellites generated a total 148 alleles across the two populations. The number of alleles per locus varied from 2 to 18 alleles and measures of Ho and He varied from 0.395 to 0.877 and from 0.441 to 0.880, respectively. We also present primers for four novel mitochondrial DNA (mtDNA) markers. The combined length of the four mtDNA marker pairs was 2,528 bp which included 15 nucleotides changes. In comparison to threatened species, which are generally characterised by small population sizes, the Eastern Water Dragon represents an ideal model species to investigate the effect of urbanisation on their behavioural ecology and connectivity patterns among populations.
Resumo:
Soluble organic matter derived from exotic Pinus species has been shown to form stronger complexes with iron (Fe) than that derived from most native Australian species. It has also been proposed that the establishment of exotic Pinus plantations in coastal southeast Queensland may have enhanced the solubility of Fe in soils by increasing the amount of organically complexed Fe, but this remains inconclusive. In this study we test whether the concentration and speciation of Fe in soil water from Pinus plantations differs significantly from soil water from native vegetation areas. Both Fe redox speciation and the interaction between Fe and dissolved organic matter (DOM) were considered; Fe - DOM interaction was assessed using the Stockholm Humic Model. Iron concentrations (mainly Fe 2+) were greatest in the soil waters with the greatest DOM content collected from sandy podosols (Podzols), where they are largely controlled by redox potential. Iron concentrations were small in soil waters from clay and iron oxide-rich soils, in spite of similar redox potentials. This condition is related to stronger sorption on to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for electron shuttling and microbial metabolism, restricting reductive dissolution of Fe. Vegetation type had no significant influence on the concentration and speciation of iron in soil waters, although DOM from Pinus sites had greater acidic functional group site densities than DOM from native vegetation sites. This is because Fe is mainly in the ferrous form, even in samples from the relatively well-drained podosols. However, modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxic conditions. Therefore, the input of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides (ferrihydrite) and increase the flux of dissolved Fe out of the catchment. Such inputs of iron are most probably derived from podosols planted with Pinus.
Resumo:
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi term time-space fractional models including fractional Laplacian.
Resumo:
With the recognition of the high incidence of depression and psychological distress in the legal profession, positive programs and education are being introduced at several levels, including law schools.