962 resultados para Water Gas Shift


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]Diseño de una instalación de cogeneración basada en un motor de combustible gas natural para una empresa de tratamientos térmicos y superficiales. Para satisfacer las necesidades energéticas de la planta, la potencia eléctrica la suministrará un alternador conectado al motor y, a su vez, la entalpía de los humos de escape del motor se aprovechará para la producción de vapor de agua, necesario para la actividad industrial de la empresa. Por otro lado, el calor que es necesario disipar de dicho motor se recuperará para el calentamiento de agua de red, con la finalidad de limpiar la taladrina de las piezas tratadas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial probabilities of activated, dissociative chemisorption of methane and ethane on Pt(110)-(1 x 2) have been measured. The surface temperature was varied from 450 to 900 K with the reactant gas temperature constant at 300 K. Under these conditions, we probe the kinetics of dissociation via trapping-mediated (as opposed to 'direct') mechanism. It was found that the probabilities of dissociation of both methane and ethane were strong functions of the surface temperature with an apparent activation energies of 14.4 kcal/mol for methane and 2.8 kcal/mol for ethane, which implys that the methane and ethane molecules have fully accommodated to the surface temperature. Kinetic isotope effects were observed for both reactions, indicating that the C-H bond cleavage was involved in the rate-limiting step. A mechanistic model based on the trapping-mediated mechanism is used to explain the observed kinetic behavior. The activation energies for C-H bond dissociation of the thermally accommodated methane and ethane on the surface extracted from the model are 18.4 and 10.3 kcal/mol, respectively.

The studies of the catalytic decomposition of formic acid on the Ru(001) surface with thermal desorption mass spectrometry following the adsorption of DCOOH and HCOOH on the surface at 130 and 310 K are described. Formic acid (DCOOH) chemisorbs dissociatively on the surface via both the cleavage of its O-H bond to form a formate and a hydrogen adatom, and the cleavage of its C-O bond to form a carbon monoxide, a deuterium adatom and an hydroxyl (OH). The former is the predominant reaction. The rate of desorption of carbon dioxide is a direct measure of the kinetics of decomposition of the surface formate. It is characterized by a kinetic isotope effect, an increasingly narrow FWHM, and an upward shift in peak temperature with Ɵ_T, the coverage of the dissociatively adsorbed formic acid. The FWHM and the peak temperature change from 18 K and 326 K at Ɵ_T = 0.04 to 8 K and 395 K at Ɵ_T = 0.89. The increase in the apparent activation energy of the C-D bond cleavage is largely a result of self-poisoning by the formate, the presence of which on the surface alters the electronic properties of the surface such that the activation energy of the decomposition of formate is increased. The variation of the activation energy for carbon dioxide formation with Ɵ_T accounts for the observed sharp carbon dioxide peak. The coverage of surface formate can be adjusted over a relatively wide range so that the activation energy for C-D bond cleavage in the case of DCOOH can be adjusted to be below, approximately equal to, or well above the activation energy for the recombinative desorption of the deuterium adatoms. Accordingly, the desorption of deuterium was observed to be governed completely by the desorption kinetics of the deuterium adatoms at low Ɵ_T, jointly by the kinetics of deuterium desorption and C-D bond cleavage at intermediate Ɵ_T, and solely by the kinetics of C-D bond cleavage at high Ɵ_T. The overall branching ratio of the formate to carbon dioxide and carbon monoxide is approximately unity, regardless the initial coverage Ɵ_T, even though the activation energy for the production of carbon dioxide varies with Ɵ_T. The desorption of water, which implies C-O bond cleavage of the formate, appears at approximately the same temperature as that of carbon dioxide. These observations suggest that the cleavage of the C-D bond and that of the C-O bond of two surface formates are coupled, possibly via the formation of a short-lived surface complex that is the precursor to to the decomposition.

The measurement of steady-state rate is demonstrated here to be valuable in determining kinetics associated with short-lived, molecularly adsorbed precursor to further reactions on the surface, by determining the kinetic parameters of the molecular precursor of formaldehyde to its dissociation on the Pt(110)-(1 x 2) surface.

Overlayers of nitrogen adatoms on Ru(001) have been characterized both by thermal desorption mass spectrometry and low-energy electron diffraction, as well as chemically via the postadsorption and desorption of ammonia and carbon monoxide.

The nitrogen-adatom overlayer was prepared by decomposing ammonia thermally on the surface at a pressure of 2.8 x 10^(-6) Torr and a temperature of 480 K. The saturated overlayer prepared under these conditions has associated with it a (√247/10 x √247/10)R22.7° LEED pattern, has two peaks in its thermal desorption spectrum, and has a fractional surface coverage of 0.40. Annealing the overlayer to approximately 535 K results in a rather sharp (√3 x √3)R30° LEED pattern with an associated fractional surface coverage of one-third. Annealing the overlayer further to 620 K results in the disappearance of the low-temperature thermal desorption peak and the appearance of a rather fuzzy p(2x2) LEED pattern with an associated fractional surface coverage of approximately one-fourth. In the low coverage limit, the presence of the (√3 x √3)R30° N overlayer alters the surface in such a way that the binding energy of ammonia is increased by 20% relative to the clean surface, whereas that of carbon monoxide is reduced by 15%.

A general methodology for the indirect relative determination of the absolute fractional surface coverages has been developed and was utilized to determine the saturation fractional coverage of hydrogen on Ru(001). Formaldehyde was employed as a bridge to lead us from the known reference point of the saturation fractional coverage of carbon monoxide to unknown reference point of the fractional coverage of hydrogen on Ru(001), which is then used to determine accurately the saturation fractional coverage of hydrogen. We find that ƟSAT/H = 1.02 (±0.05), i.e., the surface stoichiometry is Ru : H = 1 : 1. The relative nature of the method, which cancels systematic errors, together with the utilization of a glass envelope around the mass spectrometer, which reduces spurious contributions in the thermal desorption spectra, results in high accuracy in the determination of absolute fractional coverages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.

During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.

It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.

In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.

Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.

The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.

The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.

Part II

The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.

For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.

The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.

Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oreochrimis niloticus (L.) was introduced to Lake victoria in the 1950s. It remained relatively uncommon in catches until 1965, when the numbers began to increase dramatically. It is now the third most important commercial fish species after the Nile perch, Lates niloticus (L.) and Rastrineobola argentea (Pellegrin). Oreochromis niloticus is considered a herbivore, feeding mostly on algae and plant material. The diet now appears to be more diversified , with insects, fish, algae and plant materials all being important food items. Fish smaller than 5 cm TL have a diverse diet but there is a decline in the importance of zooplankton, the preferred food item of small fish, as fish get larger. The shift in diet could be due to changes which have occurred in the lake. Water hyacinth, Eichhornia crassipes (Mart.) Solms, which harbours numerous insects in its root balls, now has extensively coverage over the lake. The native fish species which preyed on these insects (e.g. haplochromines) have largely been eliminated and O. niloticus could be filling niches previously occupied by these cichlids and non cichlid fishes. The change in diet could also be related to food availability and abundance where the fish is feeding on the most readily available food items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.

In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.

This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I report the solubility and diffusivity of water in lunar basalt and an iron-free basaltic analogue at 1 atm and 1350 °C. Such parameters are critical for understanding the degassing histories of lunar pyroclastic glasses. Solubility experiments have been conducted over a range of fO2 conditions from three log units below to five log units above the iron-wüstite buffer (IW) and over a range of pH2/pH2O from 0.03 to 24. Quenched experimental glasses were analyzed by Fourier transform infrared spectroscopy (FTIR) and secondary ionization mass spectrometry (SIMS) and were found to contain up to ~420 ppm water. Results demonstrate that, under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <3 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 24; and (5) SIMS analyses of water in iron-rich glasses equilibrated under variable fO2 conditions can be strongly influenced by matrix effects, even when the concentrations of water in the glasses are low. Our results can be used to constrain the entrapment pressure of the lunar melt inclusions of Hauri et al. (2011).

Diffusion experiments were conducted over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to ~10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to ~430 ppm. Water concentration gradients are well described by models in which the diffusivity of water (D*water) is assumed to be constant. The relationship between D*water and water concentration is well described by a modified speciation model (Ni et al. 2012) in which both molecular water and hydroxyl are allowed to diffuse. The success of this modified speciation model for describing our results suggests that we have resolved the diffusivity of hydroxyl in basaltic melt for the first time. Best-fit values of D*water for our experiments on lunar basalt vary within a factor of ~2 over a range of pH2/pH2O from 0.007 to 9.7, a range of fO2 from IW-2.2 to IW+4.9, and a water concentration range from ~80 ppm to ~280 ppm. The relative insensitivity of our best-fit values of D*water to variations in pH2 suggests that H2 diffusion was not significant during degassing of the lunar glasses of Saal et al. (2008). D*water during dehydration and hydration in H2/CO2 gas mixtures are approximately the same, which supports an equilibrium boundary condition for these experiments. However, dehydration experiments into CO2 and CO/CO2 gas mixtures leave some scope for the importance of kinetics during dehydration into H-free environments. The value of D*water chosen by Saal et al. (2008) for modeling the diffusive degassing of the lunar volcanic glasses is within a factor of three of our measured value in our lunar basaltic melt at 1350 °C.

In Chapter 4 of this thesis, I document significant zonation in major, minor, trace, and volatile elements in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions concurrent with diffusive propagation of the boundary layer toward the inclusion center.

Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease towards the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects.

A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C hr-1 from the liquidus down to ~1000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1000 °C is 40 s to just over one hour.

Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization.

All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large portion of the noise in the light output of a laser oscillator is associated with the noise in the laser discharge. The effect of the discharge noise on the laser output has been studied. The discharge noise has been explained through an ac equivalent circuit of the laser discharge tube.

The discharge noise corresponds to time-varying spatial fluctuations in the electron density, the inverted population density and the dielectric permittivity of the laser medium from their equilibrium values. These fluctuations cause a shift in the resonant frequencies of the laser cavity. When the fluctuation in the dielectric permittivity of the laser medium is a longitudinally traveling wave (corresponding to the case in which moving striations exist in the positive column of the laser discharge), the laser output is frequency modulated.

The discharge noise has been analyzed by representing the laser discharge by an equivalent circuit. An appropriate ac equivalent circuit of a laser discharge tube has been obtained by considering the frequency spectrum of the current response of the discharge tube to an ac voltage modulation. It consist of a series ρLC circuit, which represents the discharge region, in parallel with a capacitance C', which comes mainly from the stray wiring. The equivalent inductance and capacitance of the discharge region have been calculated from the values of the resonant frequencies measured on discharge currents, gas pressures and lengths of the positive column. The experimental data provide for a set of typical values and dependencies on the discharge parameters for the equivalent inductance and capacitance of a discharge under laser operating conditions. It has been concluded from the experimental data that the equivalent inductance originates mainly from the positive column while the equivalent capacitance is due to the discharge region other than the positive column.

The ac equivalent circuit of the laser discharge has been shown analytically and experimentally to be applicable to analyzing the internal discharge noise. Experimental measurements have been made on the frequency of moving striations in a laser discharge. Its experimental dependence on the discharge current agrees very well with the expected dependence obtained from an analysis of the circuit and the experimental data on the equivalent circuit elements. The agreement confirms the validity of representing a laser discharge tube by its ac equivalent circuit in analyzing the striation phenomenon and other low frequency noises. Data have also been obtained for the variation of the striation frequency with an externally-applied longitudinal magnetic field and the increase in frequency has been attributed to a decrease in the equivalent inductance of the laser discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.

Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.

Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyanobacteria that cause problems in water supply are principally the colonial forms that are buoyed up by gas vesicles. The success of these organisms is due, in part, to their gas vesicles, which enable them to perform vertical migrations or to maintain themselves in the euphotic zone. The gas vesicles are also the root cause of the problems. In calm periods they cause the cyanobacteria to float to the water surface forming noxious scums, and they may prevent the colonies from sedimenting in water treatment plants. Gas vesicles are hollow, gas-filled structures; they are rigid but can be collapsed by the application of pressure. Their critical collapse pressure is influenced by their dimensions, which vary in different organisms. Gas vesicles are formed by the assembly of two types of protein, which determine their mechanical and physical properties. Methods for collapsing gas vesicles in natural populations of cyanobacteria will be considered. They may have application to the control of cyanobacteria in water supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

River structure and functioning are governed naturally by geography and climate but are vulnerable to natural and human-related disturbances, ranging from channel engineering to pollution and biological invasions. Biological communities in river ecosystems are able to respond to disturbances faster than those in most other aquatic systems. However, some extremely strong or lasting disturbances constrain the responses of river organisms and jeopardise their extraordinary resilience. Among these, the artificial alteration of river drainage structure and the intense use of water resources by humans may irreversibly influence these systems. The increased canalisation and damming of river courses interferes with sediment transport, alters biogeochemical cycles and leads to a decrease in biodiversity, both at local and global scales. Furthermore, water abstraction can especially affect the functioning of arid and semi-arid rivers. In particular, interception and assimilation of inorganic nutrients can be detrimental under hydrologically abnormal conditions. Among other effects, abstraction and increased nutrient loading might cause a shift from heterotrophy to autotrophy, through direct effects on primary producers and indirect effects through food webs, even in low-light river systems. The simultaneous desires to conserve and to provide ecosystem services present several challenges, both in research and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the well known sea ice phase diagram, equations are derived for determining the brine and gas content of sea Ice for high temperatures (range 0 to -2 °C) and low salinities. The presently widely used equations of Cox and Weeks (1982) are valid only for temperatures below -2°C. Fresh-water ice is used as a boundary condition for the equations. The relative salt concentrations in brine are_assumed to be the same as in normal (or standard) seawater. Two sets of equations are presented: 1) accurate formulae based on UNESCO standard sea water equations, and 2) approximate formulae based on general properties of weak solutions. The approximate formulae are not essentially different from the classical system which basically assumes the freezing point to be a linear function of fractional salt content. The agreement between the two approaches is excellent and the approximate system is good enough for most applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.