919 resultados para Waltham Forest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree mono-cultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree mono-cultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bird communities in tropical forests are strongly affected by both patch area and habitat edges. The fact that both effects are intrinsically confounded in space raises questions about how these two widely reported ecological patterns interact, and whether they are independent or simply different spatial manifestations of the same phenomenon. Moreover, do small patches of secondary forest, in landscapes where the most sensitive species have gone locally extinct, exhibit similar patterns to those previously observed in fragmented and continuous primary forests? We addressed these questions by testing edge-related differences in vegetation structure and bird community composition at 31 sites in fragmented and continuous landscapes in the imperilled Atlantic forest of Brazil. Over a two-year period, birds were captured with mist nets to a standardized effort of 680 net-hours at each site (similar to 22 000 net-hours resulting in 3381 captures from 114 species). We found that the bird community in patches of secondary forest was degraded in species composition compared to primary continuous forest, but still exhibited a strong response to edge effects. In fragmented secondary forests, edge and area effects also interacted, such that the magnitude of edge to interior differences on bird community composition declined markedly with patch size. The change in bird species composition between forest interiors and edges was similar to the change in community composition between large and small patches (because species had congruent responses to edge and area), but after controlling for edge effects community composition was no longer affected by patch area. Our results show that although secondary forests hold an impoverished bird community, ecological patterns such as area and edge effects are similar to those reported for primary forests. Our data provide further evidence that edge effects are the main drivers of area effects in fragmented landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When assessing fragmentation effects on species, not only habitat preferences on the landscape scale, but also microhabitat selection is an important factor to consider, as microhabitat is also affected by habitat disturbance, but nevertheless essential for species for foraging, nesting and sheltering. In the Atlantic Rainforest of Brazil we examined microhabitat selection of six Pyriglena leucoptera (white-shouldered fire-eye), 10 Sclerurus scansor (rufous-breasted leaftosser), and 30 Chiroxiphia caudata (blue manakin). We radio-tracked the individuals between May 2004 and February 2005 to gain home ranges based on individual fixed kernels. Vegetation structures in core plots and fringe plots were compared. In C. caudata, we additionally assessed the influence of behavioural traits on microhabitat selection. Further, we compared microhabitat structures in the fragmented forest with those in the contiguous, and contrasted the results with the birds` preferences. Pyriglena leucoptera preferred liana tangles that were more common in the fragmented forest, whereas S. scansor preferred woody debris, open forest floor (up to 0.5 m), and a thin closed leaf litter cover which all occurred significantly more often in the contiguous forest. Significant differences were detected in C. caudata for vegetation densities in the different strata; the distance of core plots to the nearest lek site was significantly influenced by sex and age. However, core sites of C. caudata in fragmented and contiguous forests showed no significant differences in structure. Exploring microhabitat selection and behavior may greatly support the understanding of habitat selection of species and their susceptibility to fragmentation on the landscape scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even among forest specialists, species-specific responses to anthropogenic forest fragmentation may vary considerably. Some appear to be confined to forest interiors, and perceive a fragmented landscape as a mosaic of suitable fragments and hostile matrix. Others, however, are able to make use of matrix habitats and perceive the landscape in shades of grey rather than black-and-white. We analysed data of 42 Chiroxiphia caudata (Blue Manakin), 10 Pyriglena leucoptera (White-shouldered Fire-eye) and 19 Sclerurus scansor (Rufous-breasted Leaftosser) radio-tracked in the Atlantic Rainforest of Brazil between 2003 and 2005. We illustrate how habitat preferences may determine how species respond to or perceive the landscape structure. We compared available with used habitat to develop a species-specific preference index for each of six habitat classes. All three species preferred old forest, but relative use of other classes differed significantly. S. scansor perceived great contrast between old forest and matrix, whereas the other two species perceived greater habitat continuity. For conservation planning, our study offers three important messages: (1) some forest specialist species are able to persist in highly fragmented landscapes; (2) some forest species may be able to make use of different anthropogenic habitat types to various degrees; whereas (3) others are restricted to the remaining forest fragments. Our study suggests species most confined to forest interiors to be considered as potential umbrella species for landscape-scale conservation planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roads and topography can determine patterns of land use and distribution of forest cover, particularly in tropical regions. We evaluated how road density, land use, and topography affected forest fragmentation, deforestation and forest regrowth in a Brazilian Atlantic Forest region near the city of Sao Paulo. We mapped roads and land use/land cover for three years (1962, 1981 and 2000) from historical aerial photographs, and summarized the distribution of roads, land use/land cover and topography within a grid of 94 non-overlapping 100 ha squares. We used generalized least squares regression models for data analysis. Our models showed that forest fragmentation and deforestation depended on topography, land use and road density, whereas forest regrowth depended primarily on land use. However, the relationships between these variables and forest dynamics changed in the two studied periods; land use and slope were the strongest predictors from 1962 to 1981, and past (1962) road density and land use were the strongest predictors for the following period (1981-2000). Roads had the strongest relationship with deforestation and forest fragmentation when the expansions of agriculture and buildings were limited to already deforested areas, and when there was a rapid expansion of development, under influence of Sao Paulo city. Furthermore, the past(1962)road network was more important than the recent road network (1981) when explaining forest dynamics between 1981 and 2000, suggesting a long-term effect of roads. Roads are permanent scars on the landscape and facilitate deforestation and forest fragmentation due to increased accessibility and land valorization, which control land-use and land-cover dynamics. Topography directly affected deforestation, agriculture and road expansion, mainly between 1962 and 1981. Forest are thus in peril where there are more roads, and long-term conservation strategies should consider ways to mitigate roads as permanent landscape features and drivers facilitators of deforestation and forest fragmentation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degree to which habitat fragmentation affects bird incidence is species specific and may depend on varying spatial scales. Selecting the correct scale of measurement is essential to appropriately assess the effects of habitat fragmentation on bird occurrence. Our objective was to determine which spatial scale of landscape measurement best describes the incidence of three bird species (Pyriglena leucoptera, Xiphorhynchus fuscus and Chiroxiphia caudata) in the fragmented Brazilian Atlantic forest and test if multi-scalar models perform better than single-scalar ones. Bird incidence was assessed in 80 forest fragments. The surrounding landscape structure was described with four indices measured at four spatial scales (400-, 600-, 800- and 1,000-m buffers around the sample points). The explanatory power of each scale in predicting bird incidence was assessed using logistic regression, bootstrapped with 1,000 repetitions. The best results varied between species (1,000-m radius for P. leucoptera; 800-m for X. fuscus and 600-m for C. caudata), probably due to their distinct feeding habits and foraging strategies. Multi-scale models always resulted in better predictions than single-scale models, suggesting that different aspects of the landscape structure are related to different ecological processes influencing bird incidence. In particular, our results suggest that local extinction and (re)colonisation processes might simultaneously act at different scales. Thus, single-scale models may not be good enough to properly describe complex pattern-process relationships. Selecting variables at multiple ecologically relevant scales is a reasonable procedure to optimise the accuracy of species incidence models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical rainforests are becoming increasingly fragmented and understanding the genetic consequences of fragmentation is crucial for conservation of their flora and fauna. We examined populations of the toad Rhinella ornata, a species endemic to Atlantic Coastal Forest in Brazil, and compared genetic diversity among small and medium forest fragments that were either isolated or connected to large forest areas by corridors. Genetic differentiation, as measured by F(ST), was not related to geographic distance among study sites and the size of the fragments did not significantly alter patterns of genetic connectivity. However, population genetic diversity was positively related to fragment size, thus haplotype diversity was lowest in the smallest fragments, likely due to decreases in population sizes. Spatial analyses of genetic discontinuities among groups of populations showed a higher proportion of barriers to gene flow among small and medium fragments than between populations in continuous forest. Our results underscore that even species with relatively high dispersal capacities may, over time, suffer the negative genetic effects of fragmentation, possibly leading to reduced fitness of population and cases of localized extinction. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the implications of forest fragmentation for conservation of leaf-litter lizards the importance of fragment size, corridors and forest structure was examined in 20 forest fragments and six localities within a continuous forest in the Atlantic Plateau of Sao Paulo state, Brazil. The fragments were 2-276 ha in area and had different degrees of connectivity depending on the presence or absence of corridors. Two species of lizards were dominant, Ecpleopus gaudichaudii and Enyalius perditus. Variation in forest structure among sites was important only in explaining the abundance of E. perditus. Regardless of variation in forest structure, lizard species composition, total lizard abundance, number of species and abundance of E. perditus were sensitive to fragmentation per se but not to fragment size or corridor linkage. The inhospitable matrix surrounding fragments is probably what determines the presence and abundance of E. perditus and the high er lizard richness in continuous forests. These conditions may have prevented lizard species from recolonizing the forest fragments. Our results emphasize that the conservation of this leaf-litter fauna depends on the maintenance of large tracts of continuous forests and not on the size of fragments or on the presence of forest connections. Strategies for conservation of leaf-litter lizards in such highly fragmented Atlantic Forest landscapes should consider the enlargement of landscape connectivity between fragments and continuous forest, allowing the latter areas to act as a source of individuals for fragments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of human-induced disturbances such as forest fragmentation and recovery after deforestation for pasture or agricultural activities have resulted in a complex landscape mosaic in the Una region of northeastern Brazil. Using a set of vegetation descriptors, we investigated the main structural changes observed in forest categories that comprise the major components of the regional landscape and searched for potential key descriptors that could be used to discriminate among different forest categories. We assessed the forest structure of five habitat categories defined as (I) interiors and (2) edges of large fragments of old-growth forest (>1000 ha), (3) interiors and (4) edges of small forest fragments (<100 ha), and (5) early secondary forests. Forest descriptors used here were: frequency of herbaceous lianas and woody climbers, number of standing dead trees, number of fallen trunks, litter depth, number of pioneer plants (early secondary and shade-intolerant species), vertical foliage stratification profile and distribution Of trees in different diameter classes. Edges and interiors of forest fragments were significantly different only in the number of standing dead trees. Secondary forests and edges of fragments showed differences in litter depth, fallen trunks and number of pioneer trees, and secondary forests were significantly different from fragment interiors in the number of standing dead trees and the number of pioneer trees. Horizontal and vertical structure evaluated via ordination analysis showed that fragment interiors, compared to secondary forests, were characterized by a greater number of medium (25-35 cm) and large (35-50 cm) trees and smaller numbers of thin trees (5-10 cm). There was great heterogeneity at the edges of small and large fragments, as these sites were distributed along almost the entire gradient. Most interiors of large and small fragments presented higher values of foliage densities at higher strata ( 15-20 m and at 20-25 m height), and lower densities at 1-5 m. All secondary forests and some fragment edge sites showed an opposite tendency. A discriminant function highlighted differences among forest categories, with transects of large fragment interiors and secondary forests representing two extremes along a disturbance gradient determined by foliage structure (densities at 15-20 m and 20-25 m), with the edges of both large and small fragments and the interiors of small fragments scattered across the gradient. The major underlying processes determining patterns of forest disturbance in the study region are discussed, highlighting the importance of forest fragments, independently of its size, as forests recovery after clear cut show a greatly distinct structure, with profound implications on fauna movements. (C) 2009 Elsevier BY. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that large fragment sizes and high connectivity levels are key components for maintaining species in fragments; however, their relative effects are poorly understood, especially in tropical areas. In order to test these effects, we built models for explaining understory birds occurrence in a fragmented Atlantic Rain Forest landscape with intermediate habitat cover (3%). Data from over 9000 mist-net hours from 17 fragments differing in size (2-175 ha) and connectivity (considering corridor linkages and distance to nearby fragments) were ranked under a model selection approach. A total 1293 individuals of 62 species were recorded. Species richness, abundance and compositional variation were mainly affected by connectivity indices that consider the capacity of species to use corridors and/or to cross short distances up to 30 m through the matrix. Bird functional groups were differently affected by area and connectivity: while terrestrial insectivores, omnivores and frugivores were affected by both area and connectivity, the other groups (understory insectivores, nectarivores, and others) were affected only by connectivity. In the studied landscape, well connected fragments can sustain an elevated number of species and individuals. Connectivity gives the opportunity for individuals to use multiple fragments, reducing the influence of fragment size. While preserving large fragments is a conservation target worldwide and should continue to be, our results indicated that connectivity between fragments can enhance the area functionally connected and is beneficial to all functional groups and therefore should be a conservation priority. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fragmented landscapes, agroforest woodlots can potentially act as stepping stones facilitating movement between forest fragments. We assessed the influence of agroforest woodlots on bird distribution and diversity in the Atlantic forest region (SE Brazil), and also tested which categories of species can use different types of connection elements, and whether this use is influenced by the distance to large forest patches. We studied two fragmented landscapes, with and without stepping stones linking large fragments, and one forested landscape. Using a point count, a bird survey was undertaken in the fragmented landscapes in five different elements: large remnants (> 400 ha), agroforest woodlots (0.4-1.1 ha), small patches (0.5-7 ha), riparian corridor, and pasture areas (the main matrix). Generalist and open-area species were commonly observed in the agroforest system or other connection elements, whereas only a few forest species were present in these connections. For the latter species, the distance of woodlots to large patches was essential to determine their richness and abundance. Based on our results and data from literature, we suggest that there is an optimal relationship between the permeability of the matrix and the efficiency of stepping stones, which occurs at intermediate degrees of matrix resistance, and is species-dependent. Because the presence of agroforest system favors a higher richness of generalist species, they appeared to be more advantageous for conservation than the monoculture system; for this reason, they should be considered as a management alternative, particularly when the matrix permeability requirement is met.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.