959 resultados para Viral Fusion Proteins
Resumo:
Pathogenic yersiniae secrete a set of antihost proteins, called Yops, by a type III secretion mechanism. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis and Yersinia enterocolitica translocate cytotoxin YopE across the host cell plasma membrane. Several lines of evidence suggest that tyrosine phosphatase YopH follows the same pathway. We analyzed internalization of YopE and YopH into murine PU5-1.8 macrophages by using recombinant Y. enterocolitica producing truncated YopE and YopH proteins fused to a calmodulin-dependent adenylate cyclase. The YopE-cyclase and YopH-cyclase hybrids were readily secreted by Y. enterocolitica. The N-terminal domain required for secretion was not longer than 15 residues of YopE and 17 residues of YopH. Internalization into eukaryotic cells, revealed by cAMP production, only required the N-terminal 50 amino acid residues of YopE and the N-terminal 71 amino acid residues of YopH. YopE and YopH are thus modular proteins composed of a secretion domain, a translocation domain, and an effector domain. Translocation of YopE and YopH across host cell's membranes was also dependent on the secretion of YopB and YopD by the same bacterium. The cyclase fusion approach could be readily extended to study the fate of other proteins secreted by invasive bacterial pathogens.
Resumo:
The ALLI gene, located at chromosome band 11q23, is involved in acute leukemia through a series of chromosome translocations and fusion to a variety of genes, most frequently to A4 and AF9. The fused genes encode chimeric proteins proteins. Because the Drosophila homologue of ALL1, trithorax, is a positive regulator of homeotic genes and acts at the level of transcription, it is conceivable that alterations in ALL1 transcriptional activity may underlie its action in malignant transformation. To begin studying this, we examined the All1, AF4, AF9, and AF17 proteins for the presence of potential transcriptional regulatory domains. This was done by fusing regions of the proteins to the yeast GAL4 DNA binding domain and assaying their effect on transcription of a reporter gene. A domain of 55 residues positioned at amino acids 2829-2883 of ALL1 was identified as a very strong activator. Further analysis of this domain by in vitro mutagenesis pointed to a core of hydrophobic and acidic residues as critical for the activity. An ALL1 domain that repressed transcription of the reporter gene coincided with the sequence homologous to a segment of DNA methyltransferase. An AF4 polypeptide containing residues 480-560 showed strong activation potential. The C-terminal segment of AF9 spanning amino acids 478-568 transactivated transcription of the reporter gene in HeLa but not in NIH 3T3 cells. These results suggest that ALL1, AF4, and probably AF9 interact with the transcriptional machinery of the cell.
Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells.
Resumo:
Proteins of the 14-3-3 family can associate with, and/or modulate the activity of, several protooncogene and oncogene products and, thus, are implicated in regulation of signaling pathways. We report that 14-3-3 is associated with another important transducing enzyme, phosphatidylinositol 3-kinase (PI3-K). A recombinant 14-3-3 fusion protein bound several tyrosine-phosphorylated proteins from antigen receptor-stimulated T lymphocytes. PI3-K was identified by immunoblotting and enzymatic assays as one of the 14-3-3-binding proteins in resting or activated cells. Moreover, endogenous 14-3-3 and PI3-K were coimmunoprecipitated from intact T cells. Far-Western blots of gel-purified, immunoprecipitated PI3-K with a recombinant 14-3-3 fusion protein revealed direct binding of 14-3-3 to the catalytic subunit (p110) of PI3-K. Finally, anti-phosphotyrosine immunoprecipitates from activated, 14-3-3-overexpressing cells contained lower PI3-K enzymatic activity than similar immunoprecipitates from control cells. These findings suggest that association of 14-3-3 with PI3-K in hematopoietic (and possibly other) cells regulates the enzymatic activity of PI3-K during receptor-initiated signal transduction.
Resumo:
Many of the molecules necessary for neurotransmission are homologous to proteins involved in the Golgi-to-plasma membrane stage of the yeast secretory pathway. Of 15 genes known to be essential for the later stages of vesicle trafficking in yeast, 7 have no identified mammalian homologs. These include the yeast SEC6, SEC8, and SEC15 genes, whose products are constituents of a 19.5S particle that interacts with the GTP-binding protein Sec4p. Here we report the sequences of rSec6 and rSec8, rat homologs of Sec6p and Sec8p. The rSec6 cDNA is predicted to encode an 87-kDa protein with 22% amino acid identity to Sec6p, and the rSec8 cDNA is predicted to encode a 110-kDa protein which is 20% identical to Sec8p. Northern blot analysis indicates that rSec6 and rSec8 are expressed in similar tissues. Immunodetection reveals that rSec8 is part of a soluble 17S particle in brain. COS cell cotransfection studies demonstrate that rSec8 colocalizes with the GTP-binding protein Rab3a and syntaxin 1a, two proteins involved in synaptic vesicle docking and fusion at the presynaptic terminal. These data suggest that rSec8 is a component of a high molecular weight complex which may participate in the regulation of vesicle docking and fusion in brain.
Resumo:
The mechanisms regulating expression of mouse mammary tumor virus (MMTV)-encoded superantigens from the viral sag gene are largely unknown, due to problems with detection and quantification of these low-abundance proteins. To study the expression and regulation of the MMTV sag gene, we have developed a sensitive and quantitative reporter gene assay based on a recombinant superantigen-human placental alkaline phosphatase fusion protein. High sag-reporter expression in Ba/F3, an early B-lymphoid cell line, depends on enhancers in either of the viral long terminal repeats (LTRs) and is largely independent of promoters in the 5' LTR. The same enhancer region is also required for general expression of MMTV genes from the 5' LTR. The enhancer was mapped to a 548-bp fragment of the MMTV LTR lying within sag and shown to be sufficient to stimulate expression from a heterologous simian virus 40 promoter. No enhancer activity of the MMTV LTR was observed in XC sarcoma cells, which are permissive for MMTV. Our results demonstrate a major role for this enhancer in MMTV gene expression in early B-lymphoid cells.
Resumo:
MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.
Resumo:
We have isolated a major integral membrane protein from Golgi-derived coatomer-coated vesicles. This 24-kDa protein, p24, defines a family of integral membrane proteins with homologs present in yeast and humans. In addition to sequence similarity, all p24 family members contain a motif with the characteristic heptad repeats found in coiled coils. When the yeast p24 isoform, yp24A, is knocked out in a strain defective for vesicle fusion, a dramatic reduction in the accumulation of transport vesicles is observed. Together, these results indicate a role for this protein family in the budding of coatamer-coated and other species of coated vesicles.
Resumo:
The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA3. Only when the mRNA3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.
Resumo:
A strategy based on the gene trap was developed to prescreen mouse embryonic stem cells for insertional mutations in genes encoding secreted and membrane-spanning proteins. The "secretory trap" relies on capturing the N-terminal signal sequence of an endogenous gene to generate an active beta-galactosidase fusion protein. Insertions were found in a cadherin gene, an unc6-related laminin (netrin) gene, the sek receptor tyrosine kinase gene, and genes encoding two receptor-linked protein-tyrosine phosphatases, LAR and PTP kappa. Analysis of homozygous mice carrying insertions in LAR and PTP kappa showed that both genes were effectively disrupted, but neither was essential for normal embryonic development.
Resumo:
Intramuscular injection of plasmid DNA expression vectors encoding the three envelope proteins of the hepatitis B virus (HBV) induced humoral responses in C57BL/6 mice specific to several antigenic determinants of the viral envelope. The first antibodies appeared within 1-2 weeks after injection of DNA and included antibodies of the IgM isotype. Over the next few weeks, an IgM to IgG class switch occurred, indicating helper T-lymphocyte activity. Peak IgG titers were reached by 4-8 weeks after a single DNA injection and were maintained for at least 6 months without further DNA injections. The antibodies to the envelope proteins reacted with group- and subtype-specific antigenic determinants of the HBV surface antigen (HBsAg). Expression vectors encoding the major (S) and middle (preS2 plus S) envelope proteins induced antibodies specific to the S protein and preS2 domain, and preS2 antibodies were prominent at early time points. In general, the expression vectors induced humoral responses in mice that mimic those observed in humans during the course of natural HBV infection.
Resumo:
Structural evidence has accumulated suggesting that fusion and/or translocation factors are involved in plastid membrane biogenesis. To test this hypothesis, we have developed an in vitro system in which the extent of fusion and/or translocation is monitored by the conversion of the xanthophyll epoxide (antheraxanthin) into the red ketocarotenoid (capsanthin). Only chromoplast membrane vesicles from red pepper fruits (Capsicum annuum) contain the required enzyme. Vesicles prepared from the mutant yellow cultivar are devoid of this enzyme and accumulate antheraxanthin. The fusion and/or translocation activity is characterized by complementation due to the synthesis of capsanthin and the parallel decrease of antheraxanthin when the two types of vesicles are incubated together in the presence of plastid stroma. We show that the extent of conversion is dependent upon an ATP-requiring protein that is sensitive to N-ethylmaleimide. Further purification and immunological analysis have revealed that the active factor, designated plastid fusion and/or translocation factor (Pftf), resides in a protein of 72 kDa. cDNA cloning revealed that mature Pftf has significant homology to yeast and animal (NSF) or bacterial (Ftsh) proteins involved in vesicle fusion or membrane protein translocation.
Resumo:
Several models have been proposed for the infectious agents that cause human Creutzfeldt-Jakob disease (CJD) and sheep scrapie. Purified proteins and extracted nucleic acids are not infectious. To further identify the critical molecular components of the CJD agent, 120S infectious material with reduced prion protein (PrP) was treated with guanidine hydrochloride or SDS. Particulate and soluble components were then separated by centrifugation and molecularly characterized. Conditions that optimally solubilized residual PrP and/or nucleic acid-protein complexes were used to produce subfractions that were assayed for infectivity. All controls retained > 90% of the 120S titer (approximately 15% of that in total brain) but lost > 99.5% of their infectivity after heat-SDS treatment (unlike scrapie fractions enriched for PrP). Exposure to 1% SDS at 22 degrees C produced particulate nucleic acid-protein complexes that were almost devoid of host PrP. These sedimenting complexes were as infectious as the controls. In contrast, when such complexes were solubilized with 2.5 M guanidine hydrochloride, the infectious titer was reduced by > 99.5%. Sedimenting PrP aggregates with little nucleic acid and no detectable nucleic acid-binding proteins had negligible infectivity, as did soluble but multimeric forms of PrP. These data strongly implicate a classical viral structure, possibly with no intrinsic PrP, as the CJD infectious agent. CJD-specific protective nucleic acid-binding protein(s) have already been identified in 120S preparations, and preliminary subtraction studies have revealed several CJD-specific nucleic acids. Such viral candidates deserve more attention, as they may be of use in preventing iatrogenic CJD and in solving a fundamental mystery.
Resumo:
Replication of the single-stranded DNA genome of geminiviruses occurs via a double-stranded intermediate that is subsequently used as a template for rolling-circle replication of the viral strand. Only one of the proteins encoded by the virus, here referred to as replication initiator protein (Rep protein), is indispensable for replication. We show that the Rep protein of tomato yellow leaf curl virus initiates viral-strand DNA synthesis by introducing a nick in the plus strand within the nonanucleotide 1TAATATT decreases 8AC, identical among all geminiviruses. After cleavage, the Rep protein remains bound to the 5' end of the cleaved strand. In addition, we show that the Rep protein has a joining activity, suggesting that it acts as a terminase, thus resolving the nascent viral single strand into genome-sized units.
Resumo:
Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.
Resumo:
Elongated particles of simple RNA viruses of plants are composed of an RNA molecule coated with numerous identical capsid protein subunits to form a regular helical structure, of which tobacco mosaic virus is the archetype. Filamentous particles of the closterovirus beet yellow virus (BYV) reportedly contain approximately 4000 identical 22-kDa (p22) capsid protein subunits. The BYV genome encodes a 24-kDa protein (p24) that is structurally related to the p22. We searched for the p24 in BYV particles by using immunoelectron microscopy with specific antibodies against the recombinant p24 protein and its N-terminal peptide. A 75-nm segment at one end of the 1370-nm filamentous viral particle was found to be consistently labeled with both types of antibodies, thus indicating that p24 is indeed the second capsid protein and that the closterovirus particle, unlike those of other plant viruses with helical symmetry, has a "rattlesnake" rather than uniform structure.