863 resultados para Vickers indentation
Resumo:
Novel brominated amorphous hydrogenated carbon (a-C:H:Br) films were produced by the plasma polymerization of acetylene-bromoform mixtures. The main parameter of interest was the degree of bromination, which depends on the partial pressure of bromoform in the plasma feed, expressed as a percentage of the total pressure, R-B. When bromoform is present in the feed, deposition rates of up to about 110 nm min(-1) may be obtained. The structure and composition of the films were characterized by Transmission Infrared Reflection Absorption Spectroscopy (IRRAS) and X-ray Photo-electron Spectroscopy (XPS). The latter revealed that films with atomic ratios Br:C of up to 0.58 may be produced. Surface contact angles, measured using goniometry, could be increased from similar to 63 degrees (for an unbrominated film) to similar to 90 degrees for R-B of 60 to 80%. Film surface roughness, measured using a profilometer, does not depend strongly on R-B. Optical properties the refractive index, n, absorption coefficient, alpha(E), where E is the photon energy, and the optical gap, E-g, were determined from film thicknesses and data obtained by Transmission Ultraviolet-Visible Near Infrared Spectroscopy (UVS). Control of n was possible via selection of R-B. The measured optical gap increases with increasing F-BC, the atomic ratio of Br to C in the film, and semi-empirical modeling accounts for this tendency. A typical hardness of the brominated films, determined via nano-indentation, was similar to 0.5 GPa. (C), 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A Quality Assessment of Titanium Castings Produced in an Experimental Short-Heating-Cycle Investment
Resumo:
The aim of this study was to evaluate the quality of casting produced in an experimental short-term heating-cycle investment. Thus, reaction layer and castability of titanium casting using an experimental spinel-based investment (VR) with short heating cycle were compared with the commercial short-heating-cycle spinel-based investment Trinell (TR), the silica-phosphate-based investment Rematitan Plus ( RP), and the conventional spinel-based investment Rematitan Ultra (RU). VR has polymeric fibers added to inorganic particles. Reaction layer assessments were carried out using Vickers hardness and elemental analysis using dispersive X-ray microanalysis (EDX). Mesh patterns were used for castability test, and powder characterization was made by scanning electron microscopy (SEM). Hardness evaluation showed no difference among the investments between 100 and 200 mu m. The most important contaminant element for VR, TR, and RU was oxygen. Higher levels of mold filling were found for TR, VR, and RU compared with that obtained with RP. The quality of castings, characterized by means of the assessments of reaction layer and castability, made from the VR was similar to the commercial investments TR and RU but superior to the RP.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Novos compósitos têm surgido no mercado especificamente destinados à confecção de restaurações estéticas posteriores. Entretanto, embora tais materiais apresentem resultados iniciais animadores, há a necessidade de comprovações adicionais para que possam ser utilizados com segurança. Resinas compostas posteriores são submetidas a estresses complexos de compressão e abrasão durante a mastigação e a aplicação de selantes superficiais tem sido relatada como forma de aumentar a resistência ao desgaste destes materiais. O presente trabalho teve como propósito avaliar a dureza e a resistência à compressão das resinas compostas Alert (Jeneric/Pentron), Ariston (Vivadent), Definite (Degussa), P60 (3M), Solitarie (Kulzer), Surefil (Dentsply) e Z100 (3M) após 90 dias de imersão em água destilada, recobertas com selante Protect It (Jeneric/Pentron) e submetidas à ciclagem mecânica (10.000 ciclos, 600N, 5Hz). Os ensaios de dureza (n=8) foram realizados em aparelho Wolpert, com diamante Vickers e peso de 50gf aplicado por 30 segundos, antes e após períodos de imersão de 30, 60 e 90 dias. Os ensaios de resistência à compressão (n=8) foram realizados somente após 90 dias, em corpos-de-prova cilíndricos medindo 8mm de altura por 4mm de diâmetro. Apenas os espécimes destinados à compressão foram ciclados mecanicamente. Os ensaios foram realizados em máquina MTS 810, equipada com célula de carga de 10kN (ciclagem) e 100kN (compressão) e velocidade de 0,5mm/min. Após análise de variância (p<0,05), os resultados mostraram, previamente à imersão, maiores valores de dureza para os materiais Z100 (74,253VHN) e Ariston (71,308VHN). A seguir, com valor semelhante à resina Ariston, mas inferior à resina Z100, apresentou-se o material Surefil (69,969VHN)...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Atualmente o titânio é empregado como biomaterial devido à sua biocompatibilidade e resistência à corrosão. Entretanto, íons fluoretos, freqüentemente empregados em dentifrícios bucais, podem interferir no processo de corrosão. O objetivo deste estudo foi analisar a influência de um meio fluoretado com diferentes pH nas propriedades mecânicas e na resistência à corrosão dos conjuntos implantes/componentes protéticos à base de Ti c.p., a partir dos testes de fadiga, microscopia eletrônica de varredura (MEV) e dureza. Foram simulados cinco anos de uso regular de meios de higiene oral com conteúdo de 1500 ppm de NaF, com dois diferentes pH, 7,4 e 5,3, mediante imersão das amostras nesses meios durante 184 horas e também em água destilada, grupo controle. As amostras foram testadas num durômetro Micromet 2001 (500gf/30s). Os dados dos testes de dureza foram analisados pelo teste de Wilcoxon, demonstrando que as amostras sofreram influência negativa na dureza após a ação dos íons fluoreto. Entretanto, essa influência não ocorreu nos testes de fadiga realizados em uma máquina de ensaios mecânicos MTS-810, fixada a 100.000 ciclos, 15Hz e programada com força de fadiga a 150 N. Pela análise de MEV foram constatadas evidências de corrosão na superfície das amostras após ação de íons fluoretos, entretanto pelo EDS não se verificou incorporação de íons fluoretos sobre a superfície dos conjuntos. Concluiu-se que a concentração de flúor e o pH das soluções não exerceram influência nas propriedades mecânicas.
Resumo:
2,25Cr-1Mo alloy steels are widely used in petrochemical plant equipments working in high temperature conditions because of their good mechanical proprieties in these conditions. Although, when exposed for a long time at high temperature, in the rage of 343 °C to 593 °C, may present the temper embrittlement phenomenon. The component named stripper of assembly converter of fluid catalytic cracking unit (UFCC) of studied plant is manufactured using this material, which is subject to temper embrittlement. The phenomenon of temper embrittlement refers to progressive lose of toughness, making the material brittle. With embrittlement, equipaments manufactured with this material are under risks to suffer brittle fracture in the cool down and start-up situations of them, which can cause catastrophic failures. By this reason, this research studies presence of temper ebrittlement phenomenon on this material. To verify the toughness of the material is conventionally used charpy V-notch test. However, this test requires the removing of samples of the material to make specimens. This fact becomes critical when talk about structural components of an equipment. So, this research also studies a non-destructive test that can be executes in-situ, known as instrumented indentation, as an alternative detection of the phenomenon at the component stripper, by comparative of the mechanical proprieties obtained by conventional tests in similar samples
Resumo:
In engineering, for correct designing the structural components required for cyclical stresses, it is necessary to determine a limit of resistance to fatigue, which is the maximum amplitude of the applied tension under which the fatigue failure does not occurs after a certain number cycles. The marine environment is hostile, not only by the high pressure, corrosion, but also by low temperatures. Petrol Production units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 up to 30 years, and must therefore be prepared to support various efforts, such as tidal, wind currents and everything that is related. This paper focuses on a study on the fatigue behavior of microalloyed steel, API 5L Grade X70, used to transport oil and gas by pipelines. For analysis, we obtained the curves S-N (stress vs. number of cycles) using laboratory data collected from cylindrical longitudinal and transverse specimens used in axial fatigue test in accordance with ASTM E466. The tensile tests and microhardness were performed to characterize the mechanical properties of the samples, and it was found that the values meet the specifications of the standard API 5L. To characterize microstructurally the material, it was also made a metallographic analysis of the steel under study, and the origin of the fatigue crack was investigated with the support of a scanning electron microscope (SEM).
Resumo:
Titanium and its alloys have been used for biomedical applications due their excellent properties such as high corrosion resistance, biocompatibility and mechanical properites. In this study, microstructural and mechanical properties of Ti-30Ta alloy was evaluated during its processing. Ti-30Ta alloy ingots were produced from sheets of commercially pure titanium (99.9%) and tantalum (99.9%). Its melting was realized in arc melting furnace in an argon atmosphere. After homogenizing at 1200ºC, ingots were cold worked by swaging. Samples with 13 mm in diameter were obtained. They were forging at the reduction ratios of 15%. After deformation, microstructure was evaluated by optical microscopy in each condition. Also, Vickers microhardness of samples was measured and phase constitution was evaluated using XRD analysis
Resumo:
This work presents experimental results of some physical properties of antimony phosphate glasses with compositions (x) Sb2O3 - (1-x) P2O5 (x = 0.75, 0.85, 0.90). Mechanical, thermal, optical and electrical properties were investigated: density, elastic moduli (Young's moduli and Poisson's ratio), Vickers microhardness, coefficient of thermal expansion, glass transition temperature, refractive index and electrical conductivity (for x = 0.75). There was no evidence of electronic conductivity by bipolaron hopping. Measurements of energy dispersive spectroscopy (EDS) showed that volatilization of Sb2O3 takes place during the glass melting
Resumo:
The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material