933 resultados para Vesicle trafficking
Resumo:
El artículo analiza los elementos esenciales del nuevo delito de trata de personas que incorporado al CP mediante la reforma de 2010. Asimismo explora la tipificación de la trata de personas en Derecho comparado, los compromisos internacionales adquiridos por el Estado español acerca de la incriminación de esta conducta y su nivel de cumplimiento con el nuevo delito.
Resumo:
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fi ber–granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fi bers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These fi ndings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.
Resumo:
Mitochondrial trafficking deficits have been implicated in the pathogenesis of several neurological diseases, including Alzheimer's disease (AD). The Ser/Thre kinase GSK3β is believed to play a fundamental role in AD pathogenesis. Given that GSK3β substrates include Tau protein, here we studied the impact of GSK3β on mitochondrial trafficking and its dependence on Tau protein. Overexpression of GSK3β in neurons resulted in an increase in motile mitochondria, whereas a decrease in the activity of this kinase produced an increase in mitochondria pausing. These effects were dependent on Tau proteins, as Tau (−/−) neurons did not respond to distinct GSK3β levels. Furthermore, differences in GSK3β expression did not affect other parameters like mitochondria velocity or mitochondria run length. We conclude that GSK3B activity regulates mitochondrial axonal trafficking largely in a Tau-dependent manner.
Resumo:
PURPOSE: Chemokines are implicated in T-cell trafficking. We mapped the chemokine landscape in advanced stage ovarian cancer and characterized the expression of cognate receptors in autologous dendritic cell (DC)-vaccine primed T cells in the context of cell-based immunotherapy. EXPERIMENTAL DESIGN: The expression of all known human chemokines in patients with primary ovarian cancer was analyzed on two independent microarray datasets and validated on tissue microarray. Peripheral blood T cells from five HLA-A2 patients with recurrent ovarian cancer, who previously received autologous tumor DC vaccine, underwent CD3/CD28 costimulation and expansion ex vivo. Tumor-specific T cells were identified by HER2/neu pentamer staining and were evaluated for the expression and functionality of chemokine receptors important for homing to ovarian cancer. RESULTS: The chemokine landscape of ovarian cancer is heterogeneous with high expression of known lymphocyte-recruiting chemokines (CCL2, CCL4, and CCL5) in tumors with intraepithelial T cells, whereas CXCL10, CXCL12, and CXCL16 are expressed quasi-universally, including in tumors lacking tumor-infiltrating T cells. DC-vaccine primed T cells were found to express the cognate receptors for the above chemokines. Ex vivo CD3/CD28 costimulation and expansion of vaccine-primed Tcells upregulated CXCR3 and CXCR4, and enhanced their migration toward universally expressed chemokines in ovarian cancer. CONCLUSIONS: DC-primed tumor-specific T cells are armed with the appropriate receptors to migrate toward universal ovarian cancer chemokines, and these receptors are further upregulated by ex vivo CD3/CD28 costimulation, which render T cells more fit for migrating toward these chemokines. Clin Cancer Res; 21(12); 2840-50. ©2015 AACR.
Resumo:
Avec plus de 100000 transplantations d'organes solides (TOS) par année dans le monde, la transplantation d'organes reste actuellement l'un des meilleurs traitements disponibles pour de nombreuses maladies en phase terminale. Bien que les médicaments immunosuppresseurs couramment utilisés soient efficaces dans le contrôle de la réponse immune engendrant le rejet aigu d'une greffe, la survie du greffon à long terme ainsi que la présence d'effets secondaires indésirables restent un enjeu considérable en clinique. C'est pourquoi il est nécessaire de trouver de nouvelles approches thérapeutiques innovantes permettant de contrôler la réponse immunitaire et ainsi d'améliorer les résultats à long terme. L'utilisation des lymphocytes T régulateurs (Treg), suppresseurs naturels de la réponse inflammatoire, a fait l'objet de nombreuses études ces dix dernières années, et pourrait être considérée comme un moyen intéressant d'améliorer la tolérance immunologique de la greffe. Cependant, l'un des obstacles de l'utilisation des Treg comme agent thérapeutique est leur nombre insuffisant non seulement en conditions normales, mais en particulier lors d'une forte réponse immune avec expansion de cellules immunitaires alloréactives. En raison des limitations techniques connues pour l'induction des Treg ex-vivo ou in vitro, nous avons dédié la première partie du travail de thèse à la détermination de l'efficacité de l'induction des Treg in vivo grâce à l'utilisation d'un complexe protéique IL-2/JES6-1 (IL2c). Nous avons montré que l'expansion des Treg par IL2c permettait d'augmenter la survie du greffon sur un modèle murin de transplantation de peau avec mismatch entre le donneur et le receveur pour le complexe majeur d'histocompatibilité (CMH). De plus, nous avons vu qu'en combinant IL2c à une inhibition à court terme de la voie de co-stimulation CD40L-CD40 (anti-CD154/MRl, administré au moment de la transplantation) pour empêcher l'activation des lymphocytes T, il est possible d'induire une tolérance robuste à long terme. Finalement, nos résultats soulignent l'importance de cibler une voie de co-stimulation bien particulière. En effet, l'utilisation d'IL2c combinée au blocage de la co-stimulation CD28-B7.1/2 (CTLA-4 Ig) n'induit qu'une faible prolongation de la survie de la greffe et n'induit pas de tolérance. L'application chez l'humain des traitements induisant la tolérance dans des modèles expérimentaux murins ou de primates n'a malheureusement pas montré de résultats probants en recherche clinique ; une des principales raisons étant la présence de lymphocytes B et T mémoires provenant du systeme d immunité acquise. C est pourquoi nous avons testé si la combinaison d'IL2c et MR1 améliorait la survie de la greffe dans des souris pré¬sensibilisées. Nous avons trouvé qu'en présence de lymphocytes B et T mémoires alloréactifs, l'utilisation d'IL2c et MR1 permettait une amélioration de la survie de la greffe de peau des souris immunocompétentes mais comparé aux souris receveuses naïves, aucune tolérance n'a pu être induite. Toutefois, l'ajout d'un traitement anti-LFA-1 (permettant de bloquer la circulation des lymphocytes T activées) a permis d'améliorer de manière significative la survie de la greffe. Cependant, le rejet chronique, dû à la présence de lymphocytes B activés/mémoires et la production d'anticorps donneur-spécifiques, n'a pas pu être évité. Cibler l'activation des lymphocytes T est la stratégie immunothérapeutique prépondérente après une TOS. C'est pourquoi dans la deuxième partie de cette thèse nous nous sommes intéressés au système de signalisation d'un récepteur des lymphocytes T qui dépend de la paracaspase Malti en tant que nouvelle stratégie immunosuppressive pour le contrôle des lymphocytes T alloréactifs. Nous avons montré que bien que l'inhibition de la signalisation du lymphocyte T en aval de Malti induise une tolérance envers un greffon de peau avec incompatibilités antigéniques mineures, cela ne permet cependant qu'une régulation partielle de l'alloréponse contre des antigènes du CMH. Nous nous sommes aussi intéressés spécifiquement à l'activité protéolytique de Malti. L'inhibition constitutive de l'activité protéolytique de Malti chez les souris Malti-ki s'est révélée délétère pour l'induction de la tolérance car elle diminue la fonction des Treg et augmente l'alloréactivité des cellules Thl. Cependant, lors de l'utilisation d'un inhibiteur peptidique de l'activité protéase de Malti in vitro, il a été possible d'observer une atténuation de l'alloéactivité des lymphocytes T ainsi qu'un maintien de la population des Treg existants. Ces résultats nous laissent penser que des études plus poussées sur le rôle de la signalisation médiée par Malti seraient à envisager dans le domaine de la transplantation. En résumé, les résultats obtenus durant cette thèse nous ont permis d'élucider certains mécanismes immunologiques propres à de nouvelles stratégies thérapeutiques potentielles dont le but est d'induire une tolérance lors de TOS. De plus, ces résultats nous ont permis de souligner l'importance d'utiliser des modèles davantage physiologiques contenant, notamment en tenant compte des lymphocytes B et T mémoires alloréactifs. -- Organ transplantation remains the best available treatment for many forms of end-stage organ diseases, with over 100,000 solid organ transplantations (SOT) occurring worldwide eveiy year. Although the available immunosuppressive (IS) drugs are efficient in controlling acute immune activation and graft rejection, the off-target side effects as well as long-term graft and patient survival remain a challenge in the clinic. Hence, innovative therapeutic approaches are needed to improve long-term outcome across immunological barriers. Based on extensive experimental data obtained over the last decade, it is tempting to consider immunotherapy using Treg; the natural suppressors of overt inflammatory responses, in promoting transplantation tolerance. The first hurdle for the therapeutic use of Treg is their insufficient numbers in non- manipulated individuals, in particular when facing strong immune activation and expanding alloreactive effector cells. Because of the limitations associated with current protocols aiming at ex-vivo expansion or in vitro induction of Treg, the aim of the first part of this thesis was to determine the efficacy of direct in vivo expansion of Treg using the IL-2/JES6- 1 immune complex (IL2c). We found that whilst IL2c mediated Treg expansion alone allowed the prolonged graft survival of fìlli MHC-mismatched skin grafts, its combination with short-term CD40L-CD40 co-stimulation blockade (anti-CD 154/MR1) to inhibit T cell activation administered at the time of transplantation was able to achieve long-term robust tolerance. This study also highlighted the importance of combining Treg based therapies with the appropriate co-stimulation blockade as a combination of IL2c and CD28-B7.1/2 co- stimulation blockade (CTLA-4 Ig) only resulted in slight prolongation of graft survival but not tolerance. The translation of tolerance induction therapies modelled in rodents into non-human primates or into clinical trials has seldom been successful. One main reason being the presence of pre-existing memory T- and B-cells due to acquired immunity in humans versus laboratory animals. Hence, we tested whether IL2c+MRl could promote graft survival in pre-sensitized mice. We found that in the presence of alloreactive memory T- and B-cells, IL2c+MRl combination therapy could prolong MHC-mismatched skin graft survival in immunocompetent mice but tolerance was lost compared to the naïve recipients. The addition of anti-LF A-1 treatment, which prevents the trafficking of memory T cells worked synergistically to significantly further enhance graft survival. However, late rejection mediated by activated/memory B cells and persistent donor-specific alloantibodies still occurred. Immunotherapeutic strategies targeting the activation of T cells are the cornerstone in the current immunosuppressive management after SOT. Therefore, in the next part of this thesis we investigated the paracaspase Malti-dependent T-cell receptor signalling as a novel immunosuppressive strategy to control alloreactive T cells in transplantation. We observed that although the inhibition of Malti downstream T signalling lead to tolerance of a minor H- mismatch skin grafts, it was however not sufficient to regulate alloresponses against MHC mismatches and only prolonged graft survival. Furthermore, we investigated the potential of more selectively targeting the protease activity of Malti. Constitutive inhibition of Malti protease activity in Malti-ki mice was detrimental to tolerance induction as it diminished Treg function and increased Thl alloreactivity. However, when using a small peptide inhibitor of Malti proteolytic activity in vitro, we observed an attenuation of alloreactive T cells and sparing of the pre-existing Treg pool. This indicates that further investigation of the role of Malti signalling in the field of transplantation is required. Collectively, the findings of this thesis provide immunological mechanisms underlying novel therapeutic strategies for the promotion of tolerance in SOT. Moreover, we highlight the importance of testing tolerance induction therapies in more physiological models with pre-existing alloreactive memory T and B cells.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
OBJECTIVE: Several smaller single-center studies have reported a prognostic role for Ki-67 labeling index in prostate cancer. Our aim was to test whether Ki-67 is an independent prognostic marker of biochemical recurrence (BCR) in a large international cohort of patients treated with radical prostatectomy (RP). METHODS: Ki-67 immunohistochemical staining on prostatectomy specimens from 3,123 patients who underwent RP for prostate cancer was retrospectively performed. Univariable and multivariable Cox regression models were used to assess the association of Ki-67 status with BCR. RESULTS: Ki-67 positive status was observed in 762 (24.4 %) patients and was associated with lymph node involvement (LNI) (p = 0.039). Six hundred and twenty-one (19.9 %) patients experienced BCR. The estimated 3-year biochemical-free survivals were 85 % for patients with negative Ki-67 status and 82.1 % for patients with positive Ki-67 status (log-rank test, p = 0.014). In multivariable analysis that adjusted for the effects of age, preoperative PSA, RP Gleason sum, seminal vesicle invasion, extracapsular extension, positive surgical margins, lymphovascular invasion, and LNI, Ki-67 was significantly associated with BCR (HR = 1.19; p = 0.019). Subgroup analysis revealed that Ki-67 is associated with BCR in patients without LNI (p = 0.004), those with RP Gleason sum 7 (p = 0.015), and those with negative surgical margins (p = 0.047). CONCLUSION: We confirmed Ki-67 as an independent predictor of BCR after RP. Ki-67 could be particularly informative in patients with favorable pathologic characteristics to help in the clinical decision-making regarding adjuvant therapy and optimized follow-up scheduling.
Resumo:
Deliberate fires appear to be borderless and timeless events creating a serious security problem. There have been many attempts to develop approaches to tackle this problem, but unfortunately acting effectively against deliberate fires has proven a complex challenge. This article reviews the current situation relating to deliberate fires: what do we know, how serious is the situation, how is it being dealt with, and what challenges are faced when developing a systematic and global methodology to tackle the issues? The repetitive nature of some types of deliberate fires will also be discussed. Finally, drawing on the reality of repetition within deliberate fires and encouraged by successes obtained in previous repetitive crimes (such as property crimes or drug trafficking), we will argue that the use of the intelligence process cycle as a framework to allow a follow-up and systematic analysis of fire events is a relevant approach. This is the first article of a series of three articles. This first part is introducing the context and discussing the background issues in order to provide a better underpinning knowledge to managers and policy makers planning on tackling this issue. The second part will present a methodology developed to detect and identify repetitive fire events from a set of data, and the third part will discuss the analyses of these data to produce intelligence.
Resumo:
Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients.
Resumo:
Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.
Resumo:
Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.
Resumo:
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.