974 resultados para Venus probes
Resumo:
We have made a complete set of painting probes for the domestic horse by degenerate oligonucleotide-primed PCR amplification of flow-sorted horse chromosomes. The horse probes, together with a full set of those available for human, were hybridized onto metaphase chromosomes of human, horse and mule. Based on the hybridization results, we have generated genome-wide comparative chromosome maps involving the domestic horse, donkey and human. These maps define the overall distribution and boundaries of evolutionarily conserved chromosomal segments in the three genomes. Our results shed further light on the karyotypic relationships among these species and, in particular, the chromosomal rearrangements that underlie hybrid sterility and the occasional fertility of mules.
Resumo:
Cross-species chromosome painting with probes derived from flow-sorted dog and human chromosomes was used to construct a high-resolution comparative map for the pig. In total 98 conserved autosomal segments between pig and dog were detected by probes specific for the 38 autosomes and X Chromosome of the dog. Further integration of our results with the published human-dog and cat-dog comparative maps, and with data from comparative gene mapping, increases the resolution of the current pig-human comparative map. It allows for the conserved syntenies detected in the pig, human, and cat to be aligned against the putative ancestral karyotype of eutherian mammals and for the history of karyotype evolution of the pig lineage to be reconstructed. Fifteen fusions, 17 fissions, and 23 inversions are required to convert the ancestral mammalian karyotype into the extant karyotype of the pig.
Resumo:
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
Cross-species painting (fluorescence in situ hybridization) with 23 human (Homo sapiens (HSA)) chromosome-specific painting probes (HSA 1-22 and the X) was used to delimit regions of homology on the chromosomes of the golden mole (Ghrysochloris asiaticus) and elephant-shrew (Elephantulus rupestris). A cladistic interpretation of our data provides evidence of two unique associations, HSA 1/19p and 5/21/3, that support Afrotheria. The recognition of HSA 5/3/21 expands on the 3/21 synteny originally designated as an ancestral state for all eutherians. We have identified one adjacent segment combination (HSA2/8p/4) that is supportive of Afroinsectiphillia (aardvark, golden mole, elephant-shrew). Two segmental combinations (HSA 10q/17 and HSA 3/20) unite the aardvark and elephant-shrews as sister taxa. The finding that segmental syntenies in evolutionarily distant taxa can improve phylogenetic resolution suggests that they may be useful for testing sequence-based phylogenies of the early eutherian mammals. They may even suggest clades that sequence trees are not recovering with any consistency and thus encourage the search for additional rare genomic changes among afrotheres.
Resumo:
Chromosomal homologies have been established between the Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and five ovine species: wild goat (Capra aegagrus, CAE, 2n = 60), argall (Ovis ammon, OAM, 2n = 56), snow sheep (Ovis nivicola, ONI, 2n = 52), red goral (Naemorhedus cranbrooki, NCR, 2n = 56) and Sumatra serow (Capricornis sumatraensis, CSU, 2n = 48) by chromosome painting with a set of chromosome-specific probes of the Chinese muntjac. In total, twenty-two Chinese muntjac autosomal painting probes detected thirty-five homologous segments in the genome of each species. The chromosome X probe hybridized to the whole X chromosomes of all ovine species while the chromosome Y probe gave no signal. Our results demonstrate that almost all homologous segments defined by comparative painting show a high degree of conservation in G-banding patterns and that each speciation event is accompanied by specific chromosomal rearrangements. The combined analysis of our results and previous cytogenetic and molecular systematic results enables us to map the chromosomal rearrangements onto a phylogenetic tree, thus providing new insights into the karyotypic evolution of these species.
Resumo:
Chromosome sorting by flow cytometry is the main source of chromosome-specific DNA for the production of painting probes. These probes have been used for cross-species in situ hybridization in the construction of comparative maps, in the study of karyotype evolution and phylogenetics, in delineating territories in interphase nuclei, and in the analysis of chromosome breakpoints. We review here the contributions that this technology has made to the analysis of primate genomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Multidirectional comparative chromosome painting was used to investigate the karyotypic relationships among representative species from three Feliformia families of the order Carnivora ( Viverridae, Hyaenidae and Felidae). Complete sets of painting probes derived from flow-sorted chromosomes of the domestic dog, American mink, and human were hybridized onto metaphases of the spotted hyena (Crocuta crocuta, 2n = 40) and masked palm civet (Paguma larvata, 2n = 44). Extensive chromosomal conservation is evident in these two species when compared with the cat karyotype, and only a few events of chromosome fusion, fission and inversion differentiate the karyotypes of these Feliformia species. The comparative chromosome painting data have enabled the integration of the hyena and palm civet chromosomes into the previously established comparative map among the domestic cat, domestic dog, American mink and human and improved our understanding on the karyotype phylogeny of Feliformia species. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Multidirectional chromosome painting with probes derived from flow-sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, a
Resumo:
Restriction maps of rDNA repeats of five species of Colobinae and three outgroup taxa, Hylobates leucogenys, Macaca mulatta, and Macaca irus, were constructed using 15 restriction endonucleases and cloned 18S and 28S rRNA gene probes. The site variation between Rhinopithecus roxellana and Rhinopithecus bieti is comparable to that between Presbytis francoisi and Presbytis phayrei, implying that R. bieti is a valid species rather than a subspecies of R. roxellana. Phylogenetic analysis on the 47 informative sites supports the case for Rhinopithecus being an independent genus and closely related to Presbytis. Furthermore, branch lengths of the tree seem to support the hypothesis that the leaf monkeys share some ancestral traits as well as some automorphic characters.
Resumo:
Many fluorescent probes excited by visible light have been used to assess sperm quality by flow cytometry. Developing a viability evaluation method using UV excited stains would be useful for multiparameter analysis of sperm function. This investigation was conducted to determine the efficacy of Hoechst 33342 (H342) and propidium iodide (PI) dual staining for evaluating rhesus monkey sperm viability through use of flow cytometry and excited by a single UV laser. The results showed that the live cells stained only with H342 strongly correlated with expected sperm viability, and flow cytometric analyses were highly correlated with fluorescence microscopic observation. Using H342/PI/SYBR-14 triple staining method, it was found that the live/dead sperm distributions were completely concordant in both H342/PI and SYBR-14/PI assays. In addition, this dual staining was extended with fluorescein isothiocyanate-conjugated peanut agglutinin (FITC-PNA) to simultaneously analyze viability and acrosome integrity of sperm cryopreserved using two different extenders, TTE and TEST, and indicated that TTE offered better Preservation of plasma and acrosome integrity than TEST Therefore, the H342/PI dual staining provides an accurate technique for evaluating viability of rhesus monkey sperm and should be valuable for multiparameter flow cytometric analysis of sperm function.
Resumo:
To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6-10, 12-22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1-5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1-5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
On page OP 175, U. Steiner and co-workers destabilise polymer trilayer films using an electric field to generate separated micrometre-sized core-shell pillars, which are further modified by selective polymer dissolution to yield polymer core columns surrounded by a rim and micro-volcano rim structures. When coated with gold and decorated with Raman active probes, all three structure types give rise to substantial enhancement in surface-enhanced Raman scattering (SERS). Since this SERS enhancement arises from each of the isolated structures in the array, these surface patterns are an ideal platform for multiplexed SERS detection.
Resumo:
Nanoindentation provides the ideal framework to determine mechanical properties of bone at the tissue scale without being affected by the size, shape, and porosity of the bone. However, the values of tissue level mechanical properties vary significantly between studies. Since the differences in the bone sample, hydration state, and test parameters complicate direct comparisons across the various studies, these discrepancies in values cannot be compared directly. The objective of the current study is to evaluate and compare mechanical properties of the same bones using a broad range of testing parameters. Wild type C56BL6 mice tibiae were embedded following different processes and tested in dry and rehydrated conditions. Spherical and Berkovich indenter probes were used, and data analysis was considered within the elasto-plastic (Oliver-Pharr), viscoelastic and visco-elastic-plastic frameworks. The mean values of plane strain modulus varied significantly depending on the hydration state, probe geometry and analysis method. Indentations in dry bone analyzed using a visco-elastic-plastic approach gave values of 34 GPa. After rehydrating the same bones and indenting them with a spherical tip and utilizing a viscoelastic analysis, the mean modulus value was 4 GPa, nearly an order of magnitude smaller. Results suggest that the hydration state, probe geometry and the limitations and assumptions of each analysis method influence significantly the measured mechanical properties. This is the first time that such a systematic study has been carried out and it has been concluded that the discrepancies in the mechanical properties of bone measured by nanoindentation found in the literature should not be attributed only to the differences between the bones themselves, but also to the testing and analysis protocols.
Resumo:
Partial rDNA sequences of Prorocentrum minimum and Takayama pulchella were amplified, cloned and sequenced. and these sequence data were deposited in the GenBank. Eight oligonucleotide probes (DNA probes) were designed based on the sequence analysis. The probes were employed to detect and identify P. minimum and T. pulchella in unialgal and mixed algal samples with a fluorescence in situ hybridization method using flow cytometry. Epifluorescence micrographs showed that these specific probes labeled with fluorescein isothiocyanate entered the algal cells and bound to target sequences, and the fluorescence signal resulting from whole-cell hybridization varied from probe to probe. These DNA probes and the hybridization protocol we developed were specific and effective for P. minimum and T. pulchella, without any specific binding to other algal species. The hybridization efficiency of different probes specific to P. minimum was in the order: PM18S02 > PM28S02 > PM28S01 > PM18S01, and that of the probes specific to T. pulchella was TP18S02 > TP28S01 > TP28S02 > TP18S01. The different hybridization efficiency of the DNA probes could also be shown in the fluorescent signals between the labeled and unlabeled cells demonstrated using flow cytometry. The DNA probes PM18S02, PM28S02; TP18S02 and TP28S01, and the protocol, were also useful for the detection of algae in natural samples.