933 resultados para Variable hydrologique
Resumo:
This paper presents a multi-cell single-phase high power factor boost rectifier in interleave connection, operating in critical conduction mode, employing a soft-switching technique, and controlled by Field Programmable Gate Array (FPGA). The soft-switching technique is based on zero-current-switching (ZCS) cells, providing ZC (zero-current) turn-on and ZCZV (zero-current-zero-voltage) turn-off for the active switches, and ZV (zero-vohage) turn-on and ZC (zero-current) turn-off for the boost diodes. The disadvantages related to reverse recovery effects of boost diodes operated in continuous conduction mode (additional losses, and electromagnetic interference (EMI) problems) are minimized, due to the operation in critical conduction mode. In addition, due to the interleaving technique, the rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller has been developed using a hardware description language (VHDL) and implemented using a XC2S200E-SpartanII-E/Xilinx FPGA device, performing a true critical conduction operation mode for all interleaved cells, and a closed-loop to provide the output voltage regulation, like as a preregulator rectifier. Experimental results are presented for a implemented prototype with two and with four interleaved cells, 400V nominal output voltage and 220V(rms) nominal input voltage, in order to verify the feasibility and performance of the proposed digital control through the use of a FPGA device.
Resumo:
In this paper were investigated phase-shift control strategies applied to a four cells interleaved high input-power-factor pre-regulator boost rectifier, operating in critical conduction mode, using a non-dissipative commutation cells and frequency modulation. The digital control has been developed using a hardware description language (VHDL) and implemented using the XC2S200E-SpartanII-E/Xilinx FPGA, performing a true critical conduction operation mode for a generic number of interleaved cells. Experimental results are presented, in order to verify the feasibility and performance of the proposed digital control, through the use of a Xilinx FPGA device.
Resumo:
Varying the parameters of the (X) over bar chart has been explored extensively in recent years. In this paper, we extend the study of the (X) over bar chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the (X) over bar falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the (X) over bar falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the (X) over bar chart more powerful than the CUSUM scheme in detecting shifts in the process mean.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours This article considers the properties of the XBAR chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) XBAR chart are obtained using Markov chains. The VSS XBAR chart is substantially quicker than the traditional XBAR chart in detecting moderate shifts in the process.
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
A number of studies have analyzed various indices of the final position variability in order to provide insight into different levels of neuromotor processing during reaching movements. Yet the possible effects of movement kinematics on variability have often been neglected. The present study was designed to test the effects of movement direction and curvature on the pattern of movement variable errors. Subjects performed series of reaching movements over the same distance and into the same target. However, due either to changes in starting position or to applied obstacles, the movements were performed in different directions or along the trajectories of different curvatures. The pattern of movement variable errors was assessed by means of the principal component analysis applied on the 2-D scatter of movement final positions. The orientation of these ellipses demonstrated changes associated with changes in both movement direction and curvature. However, neither movement direction nor movement curvature affected movement variable errors assessed by area of the ellipses. Therefore it was concluded that the end-point variability depends partly, but not exclusively, on movement kinematics.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
Experimental programs in constant and variable amplitude loading were performed to obtain a x N curves and to study retardation in fatigue crack growth due to overloads. The main aim of this research program was to analyse the effect of overload ratio and number of overload peaks. The effect of underloads, before and after the overload blocks was also studied. The generalised equation of Paris-Erdogan type was used for modelling of obtained data on crack propagation under constant amplitude load.
Resumo:
The aim of this study was to develop and evaluate a variable dose rate application of herbicides using an online electronic control based system with optical sensors for weed detection in forested areas. The proposed concept was to apply a basic dose on 100% of the area (aiming to control small weeds) and to apply a complementary patch-spraying dose only on areas with higher weed infestation. For that purpose, a conventional spray boom was adjusted to apply 40% of the herbicide dose on the full area and the optical sensors were used to control the application of the complementary dose (60%) only on areas with higher infestation. The results showed that the system performed adequately. Field applications presented herbicide savings around 20 to 30%, with a similar weed control performance as compared to the full dose application on 100% of the area.
Resumo:
The VSS X chart, dedicated to the detection of small to moderate mean shifts in the process, has been investigated by several researchers under the assumption of known process parameters. In practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS chart when the process parameters are estimated, we compare them in the case where the process parameters are assumed known and we propose specific optimal control chart parameters taking the number of Phase I samples into account.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.