946 resultados para Values Driven Leadership
Resumo:
The effective heating values of the above and below ground biomass components of mature Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy birch (Betula pubescens), silver birch (Betula pendula), grey alder (Alnus incana), black alder (Alnus glutinosa) and trembling aspen (Populus tremula) were studied. Each sample tree was divided into wood, bark and foliage components. Bomb calorimetry was used to determine the calorimetric heating values. The species is a significant factor in the heating value of individual tree components. The heating value of the wood proper is highest in conifers. Broad-leaved species have a higher heating value of bark than conifers. The species factor diminishes when the weighted heating value of crown, whole stems or stump-root-system are considered. The crown material has a higher heating value per unit weight in comparison with fuelwood from small-sized stems or wholetrees. The additional advantages of coniferous crown material are that it is a non-industrial biomass resource and is readily available. The variability of both the chemical composition and the heating value is small in any given tree component of any species. However, lignin, carbohydrate and extractive content were found to vary from one part of the tree to another and to correlate with the heating value.
Resumo:
We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.
Resumo:
This dissertation is a broad study of factors affecting perceptions of CSR issues in multiple stakeholder realms, the main purpose being to determine the effects of the values of individuals on their perceptions regarding CSR. It examines perceptions of CSR both at the emic (observing individuals and stakeholders) and etic levels (conducting cross-cultural comparison) through a descriptive-empirical research strategy. The dissertation is based on quantitative interview data among Chinese, Finnish and US stakeholder groups of industry companies (with an emphasis on the forest industries) and consists of four published articles and two submitted manuscripts. Theoretically, this dissertation provides a valuable and unique philosophical and intellectual perspective on the contemporary study of CSR `The Harmony Approach to CSR'. Empirically, this dissertation does values assessment and CSR evaluation of a wide variety of business activities covering CSR reporting, business ethics, and three dimensions of CSR performance. From the multi-stakeholder perspective, this dissertation use survey methods to examine the perceptions and stakeholder salience in the context of CSR by describing, comparing the differences between demographic factors as well as hypothetical drivers behind perceptions. The results of study suggest that the CSR objective of a corporation's top management should be to manage the divergent and conflicting interests of multiple stakeholders, taking others than key stakeholders into account as well. The importance of values as a driver of ethical behaviour and decision-making has been generally recognized. This dissertation provides more empirical proof of this theory by highlighting the effects of values on CSR perceptions. It suggests that since the way to encourage responsible behaviour and develop CSR is to develop individual values and cultivate their virtues, it is time to invoke the critical role of moral (ethics) education. The specific studies of China and comparison between Finland and the US contribute to a common understanding of the emerging CSR issues, problems and opportunities for the future of sustainability. The similarities among these countries can enhance international cooperation, while the differences will open up opportunities and diversified solutions for CSR in local conditions.
Resumo:
Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (2) affords an unusual octanuclear incomplete prism Ru-8(eta(6)-p-cymene)(8)(tma)(2)(mu-eta(4)-C2O4)(2)(OMe)(4)](O3SCF3)( 2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(PrC6H4Me)-Pr-i). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.
Resumo:
Results of an investigation dealing with the behaviour of grid-connected induction generators (GCIGs) driven by typical prime movers such as mini-hydro/wind turbines are presented. Certain practical operational problems of such systems are identified. Analytical techniques are developed to study the behavior of such systems. The system consists of the induction generator (IG) feeding a 11 kV grid through a step-up transformer and a transmission line. Terminal capacitors to compensate for the lagging VAr are included in the study. Computer simulation was carried out to predict the system performance at the given input power from the turbine. Effects of variations in grid voltage, frequency, input power, and terminal capacitance on the machine and system performance are studied. An analysis of self-excitation conditions on disconnection of supply was carried out. The behavior of a 220 kW hydel system and 55/11 kW and 22 kW wind driven system corresponding to actual field conditions is discussed
Resumo:
The purpose of this study was to examine whether trust in supervisor and trust in senior management enhance employees' job satisfaction and organizational commitment, and whether trust mediates the relationship between perceived justice and these outcomes. Trust in supervisor was expected to mediate the effects of distributive justice and interactional justice, and trust in senior management was expected to mediate the effects of procedural justice. Theoretical background of the study is based on the framework for trust in leadership developed by Dirks and Ferrin (2002). According to the framework, perceived fairness of leaders' actions helps employees to draw inferences about the basis of the relationship and about leaders' characters. This allows trust formation. Reciprocation of care and concern in the relationship and confidence in leaders' characters are likely to enhance employees' job satisfaction and organizational commitment. This study was conducted with cross-sectional data (A/ = 960) of employees from social and health care sector. Hypotheses were studied using correlation analysis and several hierarchical regression analyses. Significances of the mediations were assessed using the Sobel test. Results partially supported the hypotheses. Trust in leadership was positively related to job satisfaction and organizational commitment. Trust in senior management mediated the relationship between procedural justice and the outcomes. Some support was also found for the mediating effect of trust in supervisor in the relationship between distributive justice and organizational commitment. Due to high correlation between trust in supervisor anil interactional justice, it wasn't possible to study the mediating e fleet of trust in supervisor in the relationship between interactional justice and the outcomes. Against expectations, results indicated that trust in senior management had a mediating effect in the relationship between distributive justice and organizational commitment, and in the relationship between interactional justice and organizational commitment. Results also indicated that trust in supervisor had a mediating effect in the relationship between procedural justice and organizational commitment.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1
Resumo:
An experimental flow loop with He II flow driven by fountain effect pumps (FEPs) is studied with respect to operation at different flow impedances and with thermal loads applied at different positions. The measured values of temperature, flow rate and pressure drop are compared with calculations resulting from a simplified model which assumes ideal performance of the porous plug and of the heat exchangers and which does not take into account Gorter-Mellink (GM) conduction. The main features of the loop are shown to be well described by this model. Refined calculations with a more complex model, including GM conduction of the He II, are only required for predicting the temperature distribution in some discrete regions of the loop.
Resumo:
The granular flow down an inclined plane is simulated using the discrete element (DE) technique to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model First, we examine the average coordination number for the particles in the flow down an inclined plane using the DE technique using the linear contact model with and without friction, and the Hertzian contact model with friction The simulations show that the average coordination number decreases below 1 for values of the spring stiffness corresponding to real materials, such as sand and glass, even when the angle of inclination is only 10 larger than the angle of repose Additional measures of correlations in the system, such as the fraction of particles with multibody contact, the force ratio (average ratio of the magnitudes of the largest and the second largest force on a particle), and the angle between the two largest forces on the particle, show no evidence of force chains or other correlated motions in the system An analysis of the bond-orientational order parameter indicates that the flow is in the random state, as in event-driven (ED) simulations V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are compared with the theory V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] and are found to be in quantitative agreement In addition, we also conduct a comparison of the collision frequency and the distribution of the precollisional relative velocities of particles in contact The strong correlation effects exhibited by these two quantities in event-driven simulations V Kumaran, J Fluid Mech 632, 145 (2009)] are also found in the DE simulations (C) 2010 American Institute of Physics doi 10 1063/1 3504660]
Resumo:
The design and preparation of novel M3L2 trigonal cages via the coordination-driven self-assembly of preorganized metalloligands containing octahedral aluminum(III), gallium(III), or ruthenium(II) centers is described. When tritopic or dinuclear linear metalloligands and appropriate complementary subunits are employed, M3L2 trigonal-bipyramidal and trigonal-prismatic cages are self-assembled under mild conditions. These three-dimensional cages were characterized with multinuclear NMR spectroscopy (H-1 and P-31) and high-resolution electrospray ionization mass spectrometry. The structure of one such trigonal-prismatic cage, self-assembled from an arene ruthenium metalloligand, was confirmed via single-crystal X-ray crystallography. The fluorescent nature of these prisms, due to the presence of their electron-rich ethynyl functionalities, prompted photophysical studies, which revealed that electron-deficient nitroaromatics are effective quenchers of the cages' emission. Excited-state charge transfer from the prisms to the nitroaromatic substrates can be used as the basis for the development of selective and discriminatory turn-off fluorescent sensors for nitroaromatics.
Resumo:
The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.
Resumo:
An escape mechanism in a bistable system driven by colored noise of large but finite correlation time (tau) is analyzed. It is shown that the fluctuating potential theory [Phys. Rev. A 38, 3749 (1988)] becomes invalid in a region around the inflection points of the bistable potential, resulting in the underestimation of the mean first passage time at finite tau by this theory. It is shown that transitions at large but finite tau are caused by noise spikes, with edges rising and falling exponentially in a time of O(tau). Simulation of the dynamics of the bistable system driven by noise spikes of the above-mentioned nature clearly reveal the physical mechanism behind the transition.
Resumo:
It is widely known that the compressed monolayers and bilayers of chiral lipids or fatty acids form helical morphologies, while the corresponding racemic modification gives only flat platelets without twist. No molecular explanation of this phenomenon is yet available, although subtle interactions at the chiral centers have often been proposed as the driving force behind the morphology of the aggregate to form a particular shape. In the present study, the morphologies of the chiral amphiphilic assemblies have been predicted on the basis of an effective pair potential between the molecules, which depends on the relative sizes of the groups attached to the chiral centers, the orientation of the amphiphilic molecules and also on the distance between them. It is shown that fur a pair of same kind of enantiomers, the minimum energy conformation favours a twist angle between them. This twist between the neighbouring molecules gives rise to the helicity of the aggregate. The present theory also shows from the molecular considerations that for a pair of mirror-image isomers (i.e. the racemic modification) the minimum energy conformation corresponds to the zero angle between the molecules, thus giving rise to flat platelets as observed in experiments. Another fascinating aspect of such chirality driven helical structures is that the sense (or the handedness) of the helix is highly specific about the chirality of the monomer concerned. The molecular theory shows, for the first time, that the sense of the helical structures in many cases is determined by the sizes of the groups attached to the chiral centers and the effective potential between them. The predicted senses of the helical structures are in complete agreement with the experimental results.