976 resultados para VOCAL FOLD
Resumo:
The efficient and correct folding of bacterial disulfide bonded proteins in vivo is dependent upon a class of periplasmic oxidoreductase proteins called DsbA, after the Escherichia coli enzyme. In the pathogenic bacterium Vibrio cholerae, the DsbA homolog (TcpG) is responsible for the folding, maturation and secretion of virulence factors. Mutants in which the tcpg gene has been inactivated are avirulent; they no longer produce functional colonisation pill and they no longer secrete cholera toxin. TcpG is thus a suitable target for inhibitors that could counteract the virulence of this organism, thereby preventing the symptoms of cholera. The crystal structure of oxidized TcpG (refined at a resolution of 2.1 Angstrom) serves as a starting point for the rational design of such inhibitors. As expected, TcpG has the same fold as E. coli DsbA, with which it shares similar to 40% sequence identity. Ln addition, the characteristic surface features of DsbA are present in TcpG, supporting the notion that these features play a functional role. While the overall architecture of TcpG and DsbA is similar and the surface features are retained in TcpG, there are significant differences. For example, the kinked active site helix results from a three-residue loop in DsbA, but is caused by a proline in TcpG (making TcpG more similar to thioredoxin in this respect). Furthermore, the proposed peptide binding groove of TcpG is substantially shortened compared with that of DsbA due to a six-residue deletion. Also, the hydrophobic pocket of TcpG is more shallow and the acidic patch is much less extensive than that of E. coli DsbA. The identification of the structural and surface features that are retained or are divergent in TcpG provides a useful assessment of their functional importance in these protein folding catalysts and is an important prerequisite for the design of TcpG inhibitors. (C) 1997 Academic Press Limited.
Resumo:
Background: The venoms of Conus snails contain small, disulfide-rich inhibitors of voltage-dependent sodium channels. Conotoxin GS is a 34-residue polypeptide isolated from Conus geographus that interacts with the extracellular entrance of skeletal muscle sodium channels to prevent sodium ion conduction. Although conotoxin GS binds competitively with mu conotoxin GIIIA to the sodium channel surface, the two toxin types have little sequence identity with one another, and conotoxin GS has a four-loop structural framework rather than the characteristic three-loop mu-conotoxin framework. The structural study of conotoxin GS will form the basis for establishing a structure-activity relationship and understanding its interaction with the pore region of sodium channels. Results: The three-dimensional structure of conotoxin GS was determined using two-dimensional NMR spectroscopy. The protein exhibits a compact fold incorporating a beta hairpin and several turns. An unusual feature of conotoxin GS is the exceptionally high proportion (100%) of cis-imide bond geometry for the three proline or hydroxyproline residues. The structure of conotoxin GS bears little resemblance to the three-loop mu conotoxins, consistent with the low sequence identity between the two toxin types and their different structural framework. However, the tertiary structure and cystine-knot motif formed by the three disulfide bonds is similar to that present in several other polypeptide ion channel inhibitors. Conclusions: This is the first three-dimensional structure of a 'four-loop' sodium channel inhibitor, and it represents a valuable new structural probe for the pore region of voltage-dependent sodium channels. The distribution of amino acid sidechains in the structure creates several polar and charged patches, and comparison with the mu conotoxins provides a basis for determining the binding surface of the conotoxin GS polypeptide.
Resumo:
Background-This study compared the 10-year follow-up of percutaneous coronary intervention (PCI), coronary artery surgery (CABG), and medical treatment (MT) in patients with multivessel coronary artery disease, stable angina, and preserved ventricular function. Methods and Results-The primary end points were overall mortality, Q-wave myocardial infarction, or refractory angina that required revascularization. All data were analyzed according to the intention-to-treat principle. At a single institution, 611 patients were randomly assigned to CABG (n = 203), PCI (n = 205), or MT (n = 203). The 10-year survival rates were 74.9% with CABG, 75.1% with PCI, and 69% with MT (P = 0.089). The 10-year rates of myocardial infarction were 10.3% with CABG, 13.3% with PCI, and 20.7% with MT (P < 0.010). The 10-year rates of additional revascularizations were 7.4% with CABG, 41.9% with PCI, and 39.4% with MT (P < 0.001). Relative to the composite end point, Cox regression analysis showed a higher incidence of primary events in MT than in CABG (hazard ratio 2.35, 95% confidence interval 1.78 to 3.11) and in PCI than in CABG (hazard ratio 1.85, 95% confidence interval 1.39 to 2.47). Furthermore, 10-year rates of freedom from angina were 64% with CABG, 59% with PCI, and 43% with MT (P < 0.001). Conclusions-Compared with CABG, MT was associated with a significantly higher incidence of subsequent myocardial infarction, a higher rate of additional revascularization, a higher incidence of cardiac death, and consequently a 2.29-fold increased risk of combined events. PCI was associated with an increased need for further revascularization, a higher incidence of myocardial infarction, and a 1.46-fold increased risk of combined events compared with CABG. Additionally, CABG was better than MT at eliminating anginal symptoms.
Resumo:
Sucrose:sucrose fructosyltransferase (SST) activity was partially purified from whole shoots of Lolium rigidum by a combination of affinity chromatography, gel filtration and anion-exchange chromatography. The SST activity co-eluted with some fructan:fructan fructosyltransferase (FFT) and invertase activities and consequently the partially purified preparation was termed the fructosyltransferase (FT) preparation. The SST-like activity in the FT preparation was purified 214-fold and had an apparent molecular mass of 84 000. The FT preparation contained several peptides with an apparent pI of 4.6-4.7. When assayed with sucrose concentrations up to 600 mM, the FT preparation synthesized 1-kestose at all concentrations, and synthesized 6-kestose at concentrations of 150 mM and greater. The K-m of 1-kestose production was 0.2 M. When the FT preparation was assayed at a concentration of activity approximately half that measured in fresh tissue with 100 mM sucrose, 1-kestose, or 6(G)-kestose as substrates, fructans of degree of polymerization (DP) less than or equal to 5 were synthesized. A partially purified FFT activity, free of SST and invertase activities, which synthesized beta-2,1-glycosidic linked oligofructans of DP less than or equal to 6, was combined in vitro with the FT preparation (FFT-FT preparation) to give a ratio of SST:FFT activities similar to that measured in crude enzyme extracts from L. rigidum. The FFT-FT preparation synthesized oligofructans when assayed with 100 mM concentrations of sucrose, 1-kestose or 6(G)-kestose, but was not able to synthesize fructans of DP greater than or equal to 6 even after extended assays of up to 10 h. The FFT-FT preparation was also assayed with 100 mM sucrose with small amounts of concentrated sucrose added periodically during the assay to maintain the substrate concentration. In this assay, the FFT-FT preparation synthesized fructans up to an apparent DP of 17 or greater. The fructans of DP greater than or equal to 6 synthesized in the assay appeared to form two molecular series containing both beta-2,1- and beta-2,6-glycosidic linked fructosyl residues with terminal or internal glucosyl residues. The apparent rate of SST activity in the assay of the FFT-FT preparation was greater than that measured in a similar assay of the FT preparation alone which did not result in fructans with DP greater than or equal to 6. It was concluded that the FFT-FT preparation, when assayed with a continual supply of sucrose, contained a factor which promoted synthesis of fructans of DP greater than or equal to 6 and synthesis of beta-2,B-glycosidic linkages between fructosyl residues.
Resumo:
DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Angstrom, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the typo IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-sits disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.
Resumo:
Stent implantation produces a systemic increase of inflammatory markers that correlates with Chlamydophila pneumoniae infection in atherosclerotic plaque. We performed a clinical intervention study to investigate the effect of antibiotic treatment on 6-month follow-up angiographic minimal luminal diameter after stenting. Ninety patients were randomly assigned to oral azithromycin or placebo in a double-blinded and randomized fashion. Medication was initiated 2 weeks before a pre-scheduled stenting procedure and maintained 12 weeks thereafter. Angiographic outcomes were evaluated by a six-month follow-up angiography and laboratorial parameters were accessed by blood sampling 2 weeks before stenting, within the first 24 h after procedure and additional samples after four weeks and 6 months. Minimal luminal diameter (1.76 +/- A 0.56 mm Vs. 1.70 +/- A 0.86 mm; P = 0.7), restenosis rate, diameter stenosis, late loss, and binary restenosis rates were comparable in placebo and azithromycin group in the 6 months follow-up. Serum levels of C-reactive protein presented a three fold significant increase in the control group one day after stenting but did not change in the azithromycin group (8.5 [3.0;16.4] Vs. 2.9 [1.7;6.6]-median [25;75 percentile] P < 0.01). Azithromycin does not improve late angiographic outcomes but attenuates the elevation of C-reactive protein levels after stenting, indicating an anti-inflammatory effect.
Resumo:
We have compared the use of bioelectrical impedance analysis (BIA) with anthropometry for the prediction of changes in total body potassium (TBK) in a group (n = 31) of children with cystic fibrosis. Linear regression analysis showed that TBK was highly correlated (r > 0.93) with height(2)/impedance, weight, height, and fat-free mass (FFM) estimated from skin-fold measurements. Changes in TBK were also correlated, but less well, with changes in height(2)/impedance, weight, height, and FFM (r = 0.69, 0.59, 0.44, and 0.40, respectively). The children were divided into two groups: those who had normal accretion of TBK (> 5%/y) and those who had suboptimal accretion of TBK (< 5%/y). Analysis of variance showed that the significant difference in the change in TBK between the groups was detectable by concomitant changes in impedance and weight but not by changes in height, FFM, or weight and height Z scores. The results of this study suggest that serial BIA measures may be useful as a predictor of progressive undernutrition and poor growth in children with cystic fibrosis. (C) Elsevier Science Inc. 1997.
Resumo:
We examined the role of cytokinins (CKs) in release of apical dominance in lateral buds of chickpea (Cicer arietinum L.). Shoot decapitation or application of CKs (benzyladenine, zeatin or dihydrozeatin) stimulated rapid bud growth. Time-lapse video recording revealed growth initiation within 2 h of application of 200 pmol benzyladenine or within 3 h of decapitation. Endogenous CK content in buds changed little in the first 2 h after shoot decapitation, but significantly increased by 6 h, somewhat later than the initiation of bud growth. The main elevated CK was zeatin riboside, whose content per bud increased 7-fold by 6 h and 25-fold by 24 h. Lesser changes were found in amounts of zeatin and isopentenyl adenine CKs. We have yet to distinguish whether these CKs are imported from the roots via the xylem stream or are synthesised in situ in the buds, but CKs may be part of an endogenous signal involved in lateral bud growth stimulation following shoot decapitation. To our knowledge, this is the first detailed report of CK levels in buds themselves during release of apical dominance.
Resumo:
The aged garlic extract 'Kyolic' lowers serum cholesterol levels in humans and experimental animals and thus is presumed to have a protective effect against atherosclerosis. However, to date no studies have examined the effect of this substance on the actual development of the disease. In the present study, the right carotid artery of 24 rabbits was de-endothelialized by balloon catheterisation in order to produce a myointimal thickening. After 2 weeks the rabbits were randomly assigned to four groups: Group I received a standard diet; Group II received the standard diet supplemented with 800 mu 1/kg body weight/day 'Kyolic'; Group III received a 1% cholesterol supplemented standard diet; and Group IV received a 1% cholesterol supplemented standard diet plus 'Kyolic'. After 6 weeks, the cholesterol diet caused a 6-fold increase in serum cholesterol level (Group III; 6.4 +/- 0.6 mmol/1) compared to normal diet (Group I; 1.2 +/- 0.4 mmol/1) (P < 0.05) with only a minor, non-significant reduction seen by the addition of 'Kyolic' (Group IV; 6.2 +/- 0.7 mmol/l). Group III rabbits developed fatty streak lesions covering approximately 70 +/- 8% of the surface area of the thoracic aorta, which was significantly reduced to 25 +/- 3% in the 'Kyolic'-treated Group IV. No lesions were present in Groups I and II. The hypercholesterolaemic diet caused an increase in aortic arch cholesterol (2.1 +/- 0.1 mg cholesterol/g tissue) which was significantly reduced by 'Kyolic' supplementation (1.7 +/- 0.2 mg cholesterol/g tissue) (P < 0.05). 'Kyolic' significantly inhibited the development of thickened, lipid-filled lesions in the pre-formed neointimas produced by balloon-catheter injury of the right carotid artery in cholesterol-fed rabbits (intima as percent of artery wall, Group III 42.6 +/- 6.5% versus Group IV 23.8 +/- 2.3%, P < 0.01), but had little effect in rabbits on a standard diet (Group II 18.4 +/- 5.0% versus Group I 16.7 +/- 2.0%). In vitro studies showed that 'Kyolic' has a direct effect on inhibition of smooth muscle proliferation. In conclusion,'Kyolic' treatment reduces fatty streak development, vessel wall cholesterol accumulation and the development of fibro fatty plaques in neointimas of cholesterol-fed rabbits, thus providing protection against the onset of atherosclerosis. (C) 1997 Elsevier Science Ireland Ltd.
Resumo:
We investigated whether the administration of IL-2 combined with endostatin gene therapy was able to produce additive or even synergistic immunomodulatory activity in a mouse model of metastatic renal carcinoma. Renca cells were injected into the tail vein of BALB/c mice. After 24 h, the animals were randomly divided into four groups (5 mice/group). One group of mice was the control, the second group received treatment with 100,000 UI of Recombinant IL-2 (Proleukin, Chiron) twice a day, 1 day per week during 2 weeks (IL-2), the third group received treatment with a subcutaneous inoculation of 3.6 x 10(6) endostatin-producing cells, and the fourth group received both therapies (IL-2 + ES). Mice were treated for 2 weeks. In the survival studies, 10 mice/group daily, mice were monitored daily until they died. The presence of metastases led to a twofold increase in endostatin levels. Subcutaneous inoculation of NIH/3T3-LendSN cells resulted in a 2.75 and 2.78-fold increase in endostatin levels in the ES and IL-2 + ES group, respectively. At the end of the study, there was a significant decrease in lung wet weight, lung nodules area, and microvascular area (MVA) in all treated groups compared with the control group (P < 0.001). The significant difference in lung wet weight and lung nodules area between groups IL-2 and IL-2 + ES revealed a synergistic antitumor effect of the combined treatment (P < 0.05). The IL-2 + ES therapy Kaplan-Meier survival curves showed that the probability of survival was significantly higher for mice treated with the combined therapy (log-rank test, P = 0.0028). Conjugated therapy caused an increase in the infiltration of CD4, CD8 and CD49b lymphocytes. An increase in the amount of CD8 cells (P < 0.01) was observed when animals received both ES and IL-2, suggesting an additive effect of ES over IL-2 treatment. A synergistic effect of ES on the infiltration of CD4 (P < 0.001) and CD49b cells (P < 0.01) was also observed over the effect of IL-2. Here, we show that ES led to an increase in CD4 T helper cells as well as cytotoxic lymphocytes, such as NK cells and CD8 cells, within tumors of IL-2 treated mice. This means that ES plays a role in supporting the actions of T cells.
Resumo:
The ADAM23 gene is frequently silenced in different types of tumors, and, in breast tumors, silencing is correlated with tumor progression, suggesting that it might be associated with the acquisition of a metastatic phenotype. ADAM23 exerts its function mainly through the disintegrin domain, because its metalloprotease domain is inactive. Analysis of ADAM23 binding to integrins has revealed a specific interaction with alpha(v)beta(3) integrin mediated by the disintegrin domain. Altered expression of alpha(v)beta(3) integrin has been observed in different types of tumors, and expression of this integrin in the activated form has been shown to promote metastasis formation. Here, we investigated the possibility that interaction between ADAM23 and alpha(v)beta(3) integrin might negatively modulate alpha(v)beta(3) activation during metastatic progression. ADAM23 expression was knocked down using short hairpin RNA in the MDA-MB-435 cell line, which has been extensively used as a model for alpha(v)beta(3) integrin activation. Ablation of ADAM23 enhanced alpha(v)beta(3) integrin activation by at least 2- to 4-fold and ADAM23 knockdown cells showed enhanced migration and adhesion to classic alpha(v)beta(3) integrin ligands. Ablation of ADAM23 expression also enhanced pulmonary tumor cell arrest in immunodeficient mice. To complement our findings with clinical evidence, we showed that silencing of ADAM23 gene by DNA promoter hypermethylation in a collection of 94 primary breast tumors was significantly associated with lower distant metastases-free and disease-specific survivals and was an independent prognostic factor for poor disease outcome. Our results strongly support a functional role of ADAM23 during metastatic progression by negatively modulating alpha(v)beta(3) integrin activation. [Cancer Res 2009;69(13):5546-52]
Resumo:
Objectives: To examine the effects of triiodothyronine (T(3)), 17 beta-estradiol (E(2)), and tamoxifen (TAM) on transforming growth factor (TGF)-alpha gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T(3); dish 3: T(3)+TAM; dish 4: TAM; dish 5: E(2); dish 6: E(2)+TAM. TGF-alpha mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T(3) for 48 h significantly increased TGF-alpha mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-alpha mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-alpha mRNA expression is more efficiently upregulated by T(3) than E(2). Concomitant treatment with TAM had a mitigating effect on the T(3) effect, while E(2) induced TGF-alpha upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-alpha, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER alpha and beta; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E(2).. Endocrinol. Invest. 31: 1047-1051, 2008) (c) 2008, Editrice Kurtis
Resumo:
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
Resumo:
Levels of recombinant human follicle stimulating hormone (r-hFSH) mRNA expressed under butyrate and zinc treatment were compared in two CHO-K1 derived cell lines. In King cells under the metallothionein promoter, butyrate induced the increase in both r-hFSH productivity (q(FSH)) and mRNA levels proportionally. In the presence of 1 mM butyrate and 40 mu M zinc, a 4-fold increase in q(FSH) and mRNA levels was achieved as compared to zinc (40) alone; this wasa approximately 6 times higher than in serum free medium. In Darren cells under the beta-actin promotor butyrate induced an increase in q(SFH) but not in mRNA levels.
Resumo:
Previously we found that levels of LRRC49 (leucine rich repeat containing 49; FLJ20156) transcripts were elevated in ER-positive breast tumors compared with ER-negative breast tumors. The LRRC49 gene is located on chromosome 15q23 in close proximity to the THAP10 (THAP domain containing 10) gene. These two genes have a bidirectional organization being arranged head-to-head on opposite strands, possibly sharing the same promoter region. Analysis of the promoter region of this gene pair revealed the presence of potential estrogen response elements (EREs), suggesting the potential of this promoter to be under the control of estrogen. We used quantitative real-time PCR (qPCR) to evaluate the expression of LRRC49 and THAP10 in a series of 72 primary breast tumors, and found reduced LRRC49 and THAP10 expression in 61 and 46% of the primary breast tumors analyzed, respectively. In addition, the occurrence of LRRC49/THAP10 promoter hypermethylation was examined by methylation specific PCR (MSP) in a sub-group of the breast tumors. Hypermethylation was observed in 57.5% of the breast tumors analyzed, and the levels of mRNA expression of both genes were inversely correlated with promoter hypermethylation. We investigated the effects of 17 beta-estradiol on LRRC49 and THAP10 expression in MCF-7 breast cancer cells and found both transcripts to be up-regulated 2- to 3-fold upon 17 beta-estradiol treatment. Our results show that the transcripts of LRRC49/THAP10 bidirectional gene pair are co-regulated by estrogen and that hypermethylation of the bidirectional promoter region simultaneously silences both genes. Further studies will be necessary to elucidate the role of LRRC49/THAP10 down-regulation in breast cancer.