797 resultados para VIDEO STREAMING
Resumo:
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead
Resumo:
We analyze the effect of packet losses in video sequences and propose a lightweight Unequal Error Protection strategy which, by choosing which packet is discarded, reduces strongly the Mean Square Error of the received sequence
Resumo:
Multimedia distribution through wireless networks in the home environment presents a number of advantages which have fueled the interest of industry in recent years, such as simple connectivity and data delivery to a variety of devices. Together with High-Definition (HD) contents, multimedia wireless networks have been proposed for several applications, such as IPTV and Digital TV distribution for multiple devices in the home environment. For these scenarios, we propose a multicast distribution system for High-Definition video over 802.11 wireless networks based on rate-limited packet retransmission. We develop a limited rate ARQ system that retransmits packets according to the importance of their content (prioritization scheme) and according to their delay limitations (delay control). The performance of our proposed ARQ system is evaluated and compared with a similarly rate-limited ARQ algorithm. The results show a higher packet recovery rate and improvements in video quality for our proposed system.
Resumo:
This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird’s-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight
Resumo:
INTRODUCTION: The EVA (Endoscopic Video Analysis) tracking system a new tracking system for extracting motions of laparoscopic instruments based on non-obtrusive video tracking was developed. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. METHODS: EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical centre to track the 3D position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. RESULTS: Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics such as path length (p=0,97), average speed (p=0,94) or economy of volume (p=0,85), proving the viability of EVA. CONCLUSIONS: EVA has been successfully used in the training setup showing potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and in image guided surgery.
Resumo:
Many applications in several domains such as telecommunications, network security, large scale sensor networks, require online processing of continuous data lows. They produce very high loads that requires aggregating the processing capacity of many nodes. Current Stream Processing Engines do not scale with the input load due to single-node bottlenecks. Additionally, they are based on static con?gurations that lead to either under or over-provisioning. In this paper, we present StreamCloud, a scalable and elastic stream processing engine for processing large data stream volumes. StreamCloud uses a novel parallelization technique that splits queries into subqueries that are allocated to independent sets of nodes in a way that minimizes the distribution overhead. Its elastic protocols exhibit low intrusiveness, enabling effective adjustment of resources to the incoming load. Elasticity is combined with dynamic load balancing to minimize the computational resources used. The paper presents the system design, implementation and a thorough evaluation of the scalability and elasticity of the fully implemented system.
Resumo:
P2P applications are increasingly present on the web. We have identified a gap in current proposals when it comes to the use of traditional P2P overlays for real-time multimedia streaming. We analyze the possibilities and challenges to extend WebRTC in order to implement JavaScript APIs for P2P streaming algorithms.
Resumo:
The spreading of new systems of broadcasting and distribution of multimedia content has had as a consequence a larger need for aggregation of data and metadata to traditionally based contents of video and audio supply. Broadcasting chains of this type of channels have become overwhelmed by the quantity of resources, infrastructures and development needed for these channels to provide information. In order to avoid this kind of shortcomings, several recommendations and standards have been created to exchange metadata between production and distribution of taped programs. The problem lies in live programs, producers sometimes offer data to channels but most often, channels are not able to face required developments. The key to this problem is cost reduction. In this work, a study is conducted on added services which producers may provide to the media about content; a system is found by which additional communication expenses are not made and a model of information transfer is offered which allows low cost developments to supply new media platforms.
Resumo:
In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.
Resumo:
Current methods and tools that support Linked Data publication have mainly focused so far on static data, without considering the growing amount of streaming data available on the Web. In this paper we describe a case study that involves the publication of static and streaming Linked Data for bike sharing systems and related entities. We describe some of the challenges that we have faced, the solutions that we have explored, the lessons that we have learned, and the opportunities that lie in the future for exploiting Linked Stream Data.
Resumo:
We introduce SRBench, a general-purpose benchmark primarily designed for streaming RDF/SPARQL engines, completely based on real-world data sets from the Linked Open Data cloud. With the increasing problem of too much streaming data but not enough tools to gain knowledge from them, researchers have set out for solutions in which Semantic Web technologies are adapted and extended for publishing, sharing, analysing and understanding streaming data. To help researchers and users comparing streaming RDF/SPARQL (strRS) engines in a standardised application scenario, we have designed SRBench, with which one can assess the abilities of a strRS engine to cope with a broad range of use cases typically encountered in real-world scenarios. The data sets used in the benchmark have been carefully chosen, such that they represent a realistic and relevant usage of streaming data. The benchmark defines a concise, yet omprehensive set of queries that cover the major aspects of strRS processing. Finally, our work is complemented with a functional evaluation on three representative strRS engines: SPARQLStream, C-SPARQL and CQELS. The presented results are meant to give a first baseline and illustrate the state-of-the-art.
Experimental Prototype Merging Stereo Panoramic Video and Interactive 3D Content in a 5-sided CAVETM
Resumo:
Immersion and interaction have been identified as key factors influencing the quality of experience in stereoscopic video systems. An experimental prototype designed to explore the influence of these factors in 3D video applications is described here1. The focus is on the real-time insertion algorithm of new 3D models into the original video streams. Using this algorithm, our prototype is aimed to explore a new interaction paradigm ? similar to the augmented reality approach ? with 3D video applications.
Resumo:
En los últimos años, debido al notable desarrollo de los terminales portátiles, que han pasado de ser “simples” teléfonos o reproductores a puros ordenadores, ha crecido el número de servicios que ofrecen cada vez mayor cantidad de contenido multimedia a través de internet. Además, la distinta evolución de estos terminales hace que nos encontremos en el mercado con una amplísima gama de productos de diferentes tamaños y capacidades de procesamiento, lo que hace necesario encontrar una fórmula que permita satisfacer la demanda de dichos servicios sea cual sea la naturaleza de nuestro dispositivo. Para poder ofrecer una solución adecuada se ha optado por la integración de un protocolo como RTP y un estándar de video como SVC. RTP (Real-time Transport Protocol), en contraposición a los protocolos de propósito general fue diseñado para aplicaciones de tiempo real por lo que es ideal para el streaming de contenido multimedia. Por su parte, SVC es un estándar de video escalable que permite transmitir en un mismo stream una capa base y múltiples capas de mejora, por lo que podremos adaptar la calidad y tamaño del contenido a la capacidad y tamaño de nuestro dispositivo. El objetivo de este proyecto consiste en integrar y modificar tanto el reproductor MPlayer como la librería RTP live555 de tal forma que sean capaces de soportar el formato SVC sobre el protocolo RTP y montar un sistema servidorcliente para comprobar su funcionamiento. Aunque este proceso esté orientado a llevarse a cabo en un dispositivo móvil, para este proyecto se ha optado por realizarlo en el escenario más sencillo posible, para lo cual, se emitirán secuencias a una máquina virtual alojada en el mismo ordenador que el servidor. ABSTRACT In recent years, due to the remarkable development of mobile devices, which have evolved from "simple" phones or players to computers, the amount of services that offer multimedia content over the internet have shot up. Furthermore, the different evolution of these terminals causes that we can find in the market a wide range of different sizes and processing capabilities, making necessary to find a formula that will satisfy the demand for such services regardless of the nature of our device. In order to provide a suitable solution we have chosen to integrate a protocol as RTP and a video standard as SVC. RTP (Real-time Transport Protocol), in opposition to general purpose protocols was designed for real-time applications making it ideal for media streaming. Meanwhile, SVC is a scalable video standard which can transmit a single stream in a base layer and multiple enhancement layers, so that we can adapt the quality and size of the content to the capacity and size of our device. The objective of this project is to integrate and modify both MPlayer and RTP library live555 so that they support the SVC format over RTP protocol and set up a client-server system to check its behavior. Although this process has been designed to be done on a mobile device, for this project we have chosen to do it in the simplest possible scenario so we will stream to a virtual machine hosted on the same computer where we have the server.
Resumo:
The latest video coding standards developed, like HEVC (High Efficiency Video Coding, approved in January 2013), require for their implementation the use of devices able to support a high computational load. Considering that currently it is not enough the usage of one unique Digital Signal Processor (DSP), multicore devices have appeared recently in the market. However, due to its novelty, the working methodology that allows produce solutions for these configurations is in a very initial state, since currently the most part of the work needs to be performed manually. In consequence, the objective set consists on finding methodologies that ease this process. The study has been focused on extend a methodology, under development, for the generation of solutions for PCs and embedded systems. During this study, the standards RVC (Reconfigurable Video Coding) and HEVC have been employed, as well as DSPs of the Texas Instruments company. In its development, it has been tried to address all the factors that influence both the development and deployment of these new implementations of video decoders, ranging from tools up to aspects of the partitioning of algorithms, without this can cause a drop in application performance. The results of this study are the description of the employed methodology, the characterization of the software migration process and performance measurements for the HEVC standard in an RVC-based implementation. RESUMEN Los estándares de codificación de vídeo desarrollados más recientemente, como HEVC (High Efficiency Video Coding, aprobado en enero de 2013), requieren para su implementación el uso de dispositivos capaces de soportar una elevada carga computacional. Teniendo en cuenta que actualmente no es suficiente con utilizar un único Procesador Digital de Señal (DSP), han aparecido recientemente dispositivos multinúcleo en el mercado. Sin embargo, debido a su novedad, la metodología de trabajo que permite elaborar soluciones para tales configuraciones se encuentra en un estado muy inicial, ya que actualmente la mayor parte del trabajo debe realizarse manualmente. En consecuencia, el objetivo marcado consiste en encontrar metodologías que faciliten este proceso. El estudio se ha centrado en extender una metodología, en desarrollo, para la generación de soluciones para PC y sistemas empotrados. Durante dicho estudio se han empleado los estándares RVC (Reconfigurable Video Coding) y HEVC, así como DSPs de la compañía Texas Instruments. En su desarrollo se ha tratado de atender a todos los factores que influyen tanto en el desarrollo como en la puesta en marcha de estas nuevas implementaciones de descodificadores de vídeo; abarcando desde las herramientas a utilizar hasta aspectos del particionado de los algoritmos, sin que por ello se produzca una reducción en el rendimiento de las aplicaciones. Los resultados de este estudio son una descripción de la metodología empleada, la caracterización del proceso de migración de software, y medidas de rendimiento para el estándar HEVC en una implementación basada en RVC.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.