919 resultados para Ultraviolet supercontinuum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There were studied the variation of the solar ultraviolet radiation (UVR) in four wavelengths (305 nm, 320 nm, 340 nm e 380 nm) and erythemic dose, measured in Natal RN Brazil, from January 2001 until December 2007, using the ground ultraviolet radiometer of the Instituto Nacional de Pesquisas Espaciais / Centro Regional do Nordeste INPE-CRN, fixed on the roof of the Laboratório de Variáveis Ambientais Tropiciais LAVAT-INPE-CRN. It was verified that the mean value of the UVR in the city reachs the HIGH index before 09h00 a.m. and VERY HIGH before 09h40 a.m.; it was also verified that, except in the months of June and July, in the other months of the year the UVR reachs the HIGH index before 10h00 a.m., despite of the recommendations broadcasting in the media about the safe time to people stay ashore on the beaches of the city. After 14h30 p.m., the UVR reachs the MODERATE index in any month of the year. These evidence are valid to all years of the period studied, i.e., 2001 to 2007. The year of 2004 presented the lower mean values of UVR indices, and the year of 2007 presented the higher mean values of UVR index. It was prove, by means of the analysis of variance (ANOVA), the variation in the four wavelengths and in the erythemic dose. Considering that the city has high indices of skin cancer and cataract, the results of the research may be use as a data source to studies that intend to support programs of public health. At the same time, the results of the research may be applied to material science and agriculture studies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utilization of synthetic fibers for plastic reinforcement is more and more frequent and this growing interest requires that their mechanic behavior under the most variable conditions of structural applications be known. The use of such materials in the open and exposed to the elements is one of them. In this case, it becomes extremely necessary to study their mechanical properties (strength, stiffness) and the mechanism of fracture by which the environment aging them out. In order to do that, the material must be submitted to hot steam and ultraviolet radiation exposure cycles, according to periods of time determined by the norms. This study proposal deals with the investigation of accelerated environmental aging in two laminated polymeric composites reinforced by hybrid woven made up of synthetic fibers. The configurations of the laminated composites are defined as: one laminate reinforced with hybrid woven of glass fibers/E and Kevlar fibers/49 (LHVK) and the other laminate is reinforced with hybrid tissue of glass fibers/E and of carbon fibers AS4 (LHVC). The woven are plane and bidirectional. Both laminates are impregnated with a thermofix resin called Derakane 470-300 Epoxy Vinyl-Ester and they form a total of four layers. The laminates were industrially manufactured and were made through the process of hand-lay-up. Comparative analyses were carried out between their mechanical properties by submitting specimen to uniaxial loading tractions and three-point flexion. The specimen were tested both from their original state, that is, without being environmentally aging out, and after environmental aging. This last state was reached by using the environmental aging chamber

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil and petrochemical industry is responsable to generate a large amount of waste and wastewater. Among some efluents, is possible find the benzene, toluene, ethilbenze and isomers of xilenes compounds, known as BTEX. These compounds are very volatily, toxic for environment and potencially cancerigenous in man. Oxidative advanced processes, OAP, are unconventional waste treatment, wich may be apply on treatment and remotion this compounds. Fenton is a type of OAPs, wich uses the Fenton s reactant, hydrogen peroxide and ferrous salt, to promove the organic degradation. While the Photo-Fenton type uses the Fenton s reactant plus UV radiation (ultraviolet). These two types of OAP, according to literature, may be apply on BTEX complex system. This project consists on the consideration of the utilization of technologies Fenton and Photo-Fenton in aqueous solution in concentration of 100 ppm of BTEX, each, on simulation of condition near of petrochemical effluents. Different reactors were used for each type of OAP. For the analyticals results of amount of remotion were used the SPME technique (solid phase microextraction) for extraction in gaseous phase of these analytes and the gas chromatography/mass espectrometry The arrangement mechanical of Photo-Fenton system has been shown big loss by volatilization of these compounds. The Fenton system has been shown capable of degradate benzene and toluene compounds, with massic percentage of remotion near the 99%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of University of São Paulo and Department of Chemical Engineering, Federal University of Rio Grande do Norte have been applying the Advanced Oxidation Processes (AOP's) for the degradation of various types of pollutants. These processes are based on the generation of hydroxyl radicals, highly reactive substances. Thus, this dissertation aims to explore this process, since it has been proven to be quite effective in removing organic charge. Therefore, it was decided by photo-Fenton process applied to the degradation of the fungicide Thiophanate methyl in aqueous system using annular reactor (with lamp Philips HPLN 125W) and solar. The samples were collected during the experiment and analyzed for dissolved organic carbon (TOC) using a Shimadzu TOC (Shimadzu 5050A e VCP). The Doehlert experimental design has been used to evaluate the influence of ultraviolet radiation, the concentrations of methyl thiophanate (C12H14N4O4S2), hydrogen peroxide (H2O2) and iron ions (Fe2+), among these parameters, was considered the best experimental conditions, [Fe2+] = 0.6 mmol/L and [H2O2] = 0.038 mol/L in EXP 5 experiment and in SOL 5 experiment, obtaining a percentage of TOC removal of 60% in the annular reactor and 75% in the solar reactor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of supramolecular structures from the tetraruthenated porphyrin-containing phosphines, {TPyP[RuCl3(dppb)](4)}, RuTPyP, is demonstrated with Langmuir and Langmuir-Blodgett films. The surface pressure-molecular area isotherms (pi-A) point to an edge-on arrangement for the RuTPyP molecules in the condensed state. Weak aggregation in the Langmuir films was indicated by non-zero surface potentials at large areas per molecule and a slight red shift in the ultraviolet-visible absorption spectrum in comparison to the spectrum in solution. Further aggregation occurs in the Z-type Lang muir-Blodgett films, which was confirmed with ultraviolet-visible spectroscopy of the deposited films. Fourier transform infrared and Raman spectroscopic data for powder and Langmuir-Blodgett films indicate that the RuTPyP molecules are chemically stable in Langmuir-Blodgett films regardless of the contact with water during film fabrication. The nanostructured nature of the Langmuir-Blodgett films was manifested in cyclic voltammetry due to the high sensitivity of the metallic centers in RuTPyR Electrodes modified with Langmuir-Blodgett films exhibit an anodic peak at 100 mV and a cathodic peak at 7 mV, which is assigned to RuIII/RuII redox processes. Furthermore, Langmuir-Blodgett films from RuTPyP showed electrocatalytic activity for oxidation of benzyl alcohol, illustrated by a large shift of 100 mV in the anodic peak at 400 mV, while electropolymerized and cast films of the same compound displayed smaller and no activities, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)