963 resultados para Ultraviolet photodetector
Resumo:
报道了在铌酸锂晶体中实现紫外激光诱导畴反转的实验。在一定外加均匀电场下,铌酸锂晶体中通过波长365nm的紫外激光,由于紫外光的照射降低了矫顽电场只在通光区实现畴反转。研究表明,该方案可用于周期性极化铌酸锂的制备,并有望成为制作精细周期性畴结构的有效技术方案。
Resumo:
对紫外激光诱导近化学计量比钽酸锂晶体铁电畴反转进行了实验研究。波长为351 nm的连续紫外激光被聚焦在近化学计量比钽酸锂晶体的-z表面,同时沿与晶体自发极化相反的方向施加均匀外电场。实验证实紫外激光辐照可以有效地降低晶体畴反转所需的矫顽电场,采用数字全息干涉测量技术检测证实在激光辐照区域实现局域畴反转。研究表明采用紫外激光诱导可以实现对近化学计量比钽酸锂晶体铁电畴反转的局域控制。提出了物理机理的理论分析,认为外电场和激光辐照场的共同作用在晶体内部产生高浓度、大尺寸的缺陷结构,缺陷一定程度上降低畴体成核和畴
Resumo:
We report our observation of a bleaching effect under an ultraviolet exposure in LiNbO3:Fe:Cu crystals. Two three-step recording-transferring-fixing schemes are proposed to record nonvolatile photorefractive holograms in such crystals. In the schemes two red laser beams and an ultraviolet illumination are used selectively to write the charge grating in the shallow-level Fe centers, to develop the charge grating in the deep-level Cu centers by transferring the charge grating in the Fe centers, and to fix only the charge grating in the Cu centers for unerasable read-out. Experimental results, verifications, and an optimal recording scheme are given. A comparison of the lithium niobate crystals of the same double-doping system of Fe:Mn, Ce:Mn, Ce:Cu, and Fe:Cu is outlined. (C) 2002 Optical Society of America.
Resumo:
提出了一种将光弹调制器应用于偏振方向调制的方法.介绍了它的两种基本使用模式,利用琼斯矩阵对其偏振方向调制原理及其两种基本使用模式进行了分析。光弹调制器和1/4波片形成偏振方向调制器件时,光弹调制器处于两块透光轴相互垂直的1/4波片之间.且光弹调制器的振动轴分别和两块1/4波片的透光轴成±45°角,线偏振光通过此器件其偏振方向被调制。实验验证了光弹调制器组合1/4波片调制偏振方向的原理。将光弹调制器应用在偏振方向的调制中.使现有偏振方向调制技术的光谱范围扩展到了紫外波段。
Resumo:
实验研究了掺杂组份比对LiNbO3:Cu:Ce晶体非挥发全息记录性能的影响。结果表明.在全息记录过程中,掺杂组份比通过改变晶体的紫外光吸收特性而引起全息记录性能的改变。增加LiNbO3:Cu:Ce晶体中Cu和Ce的掺杂组份比会导致晶体对紫外光吸收的增强,进而提高了全息记录灵敏度和固定衍射效率。在弱氧化处理的掺有CuO和Ce2O4的质量分数分别为0.085%和0.011%的LiNbO3:Ce:Cu晶体中.得到了最高的固定衍射效率ηf=32%和记录灵敏度S=0.022cm/J。
Resumo:
A nonvolatile recording scheme is proposed using LiNbO3:Ce:Cu crystals and modulated UV light to record gratings simultaneously in two centres and using red light to bleach the grating in the shallow centre to realize persistent photorefractive holographic storage. Compared with the normal UV-sensitized nonvolatile holographic system, the amplitude of refractive-index changes is greatly increased and the recording sensitivity is significantly enhanced by recording with UV light in the LiNbO3:Ce:Cu crystals. Based on jointly solving the two-centre material equations and the coupled-wave equations, temporal evolutions of the photorefractive grating and the diffraction effciency are effectively described and numerically analysed. Roles of doping levels and recording-beam intensity are discussed in detail. Theoretical results confirm and predict experimental results.
Resumo:
The formation of the non-uniformity of the non-volatile volume grating in doubly doped LiNbO3 crystals is studied in detail. We find that the non-uniformity of the grating is mainly caused by strong ultraviolet light absorption, and the average saturation space-charge field is small and the diffraction efficiency is low as a result of the non-uniformity of the grating. In order to optimize the uniformity of the grating, we propose the recording scheme by using two sensitizing beams simultaneously from the two opposite sides of the crystals. Theoretical simulations and experimental verifications are performed. Results show that the well uniformed grating with high diffraction efficiency can be obtained by using this optimization scheme. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
PART I
The energy spectrum of heavily-doped molecular crystals was treated in the Green’s function formulation. The mixed crystal Green’s function was obtained by averaging over all possible impurity distributions. The resulting Green’s function, which takes the form of an infinite perturbation expansion, was further approximated by a closed form suitable for numerical calculations. The density-of-states functions and optical spectra for binary mixtures of normal naphthalene and deuterated naphthalene were calculated using the pure crystal density-of-state functions. The results showed that when the trap depth is large, two separate energy bands persist, but when the trap depth is small only a single band exists. Furthermore, in the former case it was found that the intensities of the outer Davydov bands are enhanced whereas the inner bands are weakened. Comparisons with previous theoretical calculations and experimental results are also made.
PART II
The energy states and optical spectra of heavily-doped mixed crystals are investigated. Studies are made for the following binary systems: (1) naphthalene-h8 and d8, (2) naphthalene--h8 and αd4, and (3) naphthalene--h8 and βd1, corresponding to strong, medium and weak perturbations. In addition to ordinary absorption spectra at 4˚K, band-to-band transitions at both 4˚K and 77˚K are also analyzed with emphasis on their relations to cooperative excitation and overall density-of-states functions for mixed crystals. It is found that the theoretical calculations presented in a previous paper agree generally with experiments except for cluster states observed in system (1) at lower guest concentrations. These features are discussed semi-quantitatively. As to the intermolecular interaction parameters, it is found that experimental results compare favorably with calculations based on experimental density-of-states functions but not with those based on octopole interactions or charge-transfer interactions. Previous experimental results of Sheka and the theoretical model of Broude and Rashba are also compared with present investigations.
PART III
The phosphorescence, fluorescence and absorption spectra of pyrazine-h4 and d4 have been obtained at 4˚K in a benzene matrix. For comparison, those of the isotopically mixed crystal pyrazine-h4 in d4 were also taken. All these spectra show extremely sharp and well-resolved lines and reveal detailed vibronic structure.
The analysis of the weak fluorescence spectrum resolves the long-disputed question of whether one or two transitions are involved in the near-ultraviolet absorption of pyrazine. The “mirror-image relationship” between absorption and emission shows that the lowest singlet state is an allowed transition, properly designated as 1B3u ← 1A1g. The forbidden component 1B2g, predicted by both “exciton” and MO theories to be below the allowed component, must lie higher. Its exact location still remains uncertain.
The phosphorescence spectrum when compared with the excitation phosphorescence spectra, indicates that the lowest triplet state is also symmetry allowed, showing a strong 0-0 band and a “mirror-image relationship” between absorption and emission. In accordance with previous work, the triplet state is designated as 3B3u.
The vibronic structure of the phosphorescence spectrum is very complicated. Previous work on the analysis of this spectrum all concluded that a long progression of v6a exists. Under the high resolution attainable in our work, the supposed v6a progression proves to have a composite triplet structure, starting from the second member of the progression. Not only is the v9a hydrogen-bending mode present as shown by the appearance of the C-D bending mode in the d4 spectrum, but a band of 1207 cm-1 in the pyrazine in benzene system and 1231 cm-1 in the mixed crystal system is also observed. This band is assigned as 2v6b and of a1g symmetry. Its anonymously strong intensity in the phosphorescence spectrum is interpreted as due to the Fermi resonance with the 2v6a and v9a band.
To help resolve the present controversy over the crystal phosphorescence spectrum of pyrazine, detailed vibrational analyses of the emission spectra were made. The fluorescence spectrum has essentially the same vibronic structure as the phosphorescence spectrum.
Resumo:
The cytolytic interaction of Polyoma virus with mouse embryo cells has been studied by radiobiological methods known to distinguish temperate from virulent bacteriophage. No evidence for "temperate" properties of Polyoma was found. During the course of these studies, it was observed that the curve of inactivation of Polyoma virus by ultraviolet light had two components - a more sensitive one at low doses, and a less sensitive one at higher doses. Virus which survives a low dose has an eclipse period similar to that of unirradiated virus, while virus surviving higher doses shows a significantly longer eclipse period. If Puromycin is present during the early part of the eclipse period, the survival curve becomes a single exponential with the sensitivity of the less sensitive component. These results suggest a repair mechanism in mouse cells which operates more effectively if virus development is delayed.
A comparison of the rates of inactivation of the cytolytic and transforming abilities of Polyoma by ultraviolet light, X-rays, nitrous acid treatment, or the decay of incorporated P32, showed that the transforming ability has a target size roughly 60% of that of the plaque-forming ability. It is thus concluded that only a fraction of the viral genes are necessary for causing transformation.
The appearance of virus-specific RNA in productively infected mouse kidney cells has been followed by means of hybridization between pulse-labelled RNA from the infected cells and the purified virus DNA. The results show a sharp increase in the amount of virus-specific RNA around the time of virus DNA synthesis. The presence of a small amount of virus-specific RNA in virus-free transformed cells has also been shown. This result offers strong evidence for the persistence of at least part of the viral genome in transformed cells.
Resumo:
In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelenghts, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistance of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photo-excitation coefficient S of the Fe centre on the wavelength.
Resumo:
I. ELECTROPHORESIS OF THE NUCLEIC ACIDS
A zone electrophoresis apparatus using ultraviolet optics has been constructed to study nucleic acids at concentrations less than 0.004%. Native DNA has a mobility about 15% higher than denatured DNA over a range of conditions. Otherwise, the electrophoretic mobility is independent of molecular weight, base composition or source. DNA mobilities change in the expected way with pH but the fractional change in mobility is less than the calculated change in charge. A small decrease in mobility accompanies an increase in ionic strength. RNA’s from various sources have mobilities slightly lower than denatured DNA except for s-RNA which travels slightly faster. The important considerations governing the mobility of nucleic acids appear to be the nature of the hydrodynamic segment, and the binding of counterions. The differences between electrophoresis and sedimentation stem from the fact that all random coil polyelectrolytes are fundamentally free draining in electrophoresis.
II. THE CYTOCHROME C/DNA COMPLEX
The basic protein, cytochrome c, has been complexed to DNA. Up to a cytochrome:DNA mass ratio of 2, a single type of complex is formed. Dissociation of this complex occurs between 0.05F and 0.1F NaCl. The complexing of cytochrome to DNA causes a slight increase in the melting temperature of the DNA, and a reduction of the electrophoretic mobility proportional to the decrease in net charge. Above a cytochrome:DNA mass ratio of 2.5, a different type of complex is formed. The results suggest that complexes such as are formed in the Kleinschmidt technique of electron microscopy would not exist in bulk solution and are exclusively film phenomena.
III. STUDIES OF THE ELECTROPHORESIS AND MELTING BEHAVIOUR OF NUCLEOHISTONES
Electrophoresis studies on reconstituted nucleohistones indicate that the electrophoretic mobility for these complexes is a function of the net charge of the complex. The mobility is therefore dependent on the charge density of the histone complexing the DNA, as well as on the histone/DNA ratio. It is found that the different histones affect the transition from native to denatured DNA in different ways. It appears that histone I is exchanging quite rapidly between DNA molecules in 0.01 F salt, while histone II is irreversibly bound. Histone III-IV enhances the capacity of non-strand separated denatured DNA to reanneal. Studies on native nucleoproteins indicate that there are no gene-sized uncomplexed DNA regions in any preparations studied.
IV. THE DISSOCIATION OF HISTONE FROM CALF THYMUS CROMATIN
Calf thymus nucleoprotein was treated with varying concentrations of NaCl. The identity of the histones associated and dissociated from the DNA at each salt concentration was determined by gel electrophoresis. It was found that there is no appreciable histone dissociation below 0.4 F NaCl. The lysine rich histones dissociate between 0.4 and 0.5 F NaCl. Their dissociation is accompanies by a marked increase in the solubility of the chromatin. The moderately lysine rich histones dissociate mainly between 0.8 and 1.1 F NaCl. There are two arginine rich histone components: the first dissociates between 0.8 F and 1.1 F NaCl, but the second class is the very last to be dissociated from the DNA (dissociation beginning at 1.0 F NaCl). By 2.0 F NaCl, essentially all the histones are dissociated.
The properties of the extracted nucleoprotein were studied. The electrophoretic mobility increases and the melting temperature decreases as more histones are dissociated from the DNA. A comparison with the dissociation of histones from DNA in NaClO4 shows that to dissociate the same class of histones, the concentration of NaCl required is twice that of NaClO4.
Resumo:
Para aumentar os volumes de extração de petróleo, resolver e prevenir problemas nas operações de produção são utilizados diversos produtos químicos, dentre os quais se destacam os inibidores de corrosão, que são utilizados em toda cadeia produtiva do petróleo visando proteger o sistema da deterioração por corrosão. Os sais de amônio quaternário são uma das classes de inibidores mais utilizadas pela indústria do petróleo devido a sua grande eficiência. Entretanto, sua solubilidade em água faz com que estejam presentes na água produzida representando um risco para contaminação ambiental, visto que possuem baixa biodegrabilidade e potencial de bioacumulação. Como se encontram misturados a outros produtos químicos e sob efeitos das variações do ambiente em que são aplicados, definir um método de análise confiável e viável para monitoramento em linha representa um desafio para os laboratórios de campos de produção. Neste trabalho, foi estudado o emprego da fluorescência de ultravioleta na quantificação de um inibidor de corrosão do tipo sal de amônio quaternário em água. Foram obtidos espectros de emissão do produto comercial em água, além do estudo de variáveis instrumentais e interferentes presentes na água produzida. A comparação com padrões de sal de amônio quaternário permitiu identificar como principal fluorófilo, um sal alquil-aril de amônio quaternário. Estudos de estabilidade revelaram que a adsorção do inibidor de corrosão nas superfícies dos frascos plásticos provoca a queda do sinal fluorescente e que a adição de isopropanol reduz este efeito de 40 para 24%. Foram obtidas curvas de calibração com a formulação comercial e com o cloreto de 2-metil-4-dodecil-benzil-trimetil amônio com uma boa correlação. Amostras sintéticas do inibidor foram determinadas com um erro relativo de 2,70 a 13,32%. O método de adição padrão foi avaliado usando uma amostra de água produzida, e os resultados não foram satisfatórios, devido à interferência, principalmente, de compostos orgânicos aromáticos presentes
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Buildings in Port Aransas encounter drastic environmental challenges: the potential catastrophic storm surge and high winds from a hurricane, and daily conditions hostile to buildings, vehicles, and even most vegetation. Its location a few hundred feet from the Gulf of Mexico and near-tropical latitude expose buildings to continuous high humidity, winds laden with scouring sand and corrosive salt, and extremes of temperature and ultraviolet light. Building construction methods are able to address each of these, but doing so in a sustainable way creates significant challenges. The new research building at the Marine Science Institute has been designed and is being constructed to meet the demand for both survivability and sustainability. It is tracking towards formal certification as a LEED Gold structure while being robust and resistant to the harsh coastal environment. The effects of a hurricane are mitigated by elevating buildings and providing a windproof envelope. Ground-level enclosures are designed to be sacrificial and non-structural so they can wash or blow away without imposing damage on the upper portions of the building, and only non-critical functions and equipment will be supported within them. Design features that integrate survivability with sustainability include: orientation of building axis; integral shading from direct summer sunlight; light wells; photovoltaic arrays; collection of rainwater and air conditioning condensate for use in landscape irrigation; reduced impervious cover; xeriscaping and indigenous plants; recycling of waste heat from air conditioning systems; roofing system that reflects light and heat; long life, low maintenance stainless steel, high-tensile vinyl, hard-anodized aluminum and hot-dipped galvanized mountings throughout; chloride-resistant concrete; reduced visual impact; recycling of construction materials.