945 resultados para Transient receptor potential vanilloid 1
Resumo:
Protein tyrosine kinases are pivotal in central nervous tissue development and maintenance. Here we focus on the expression of Ehk-1, a novel Elk-related receptor tyrosine kinase. Ehk-1 gene expression is observed in the developing and adult central nervous system and is highly regulated throughout development at both the messenger RNA and protein levels. Three messenger RNA transcripts of 8.5, 5.9 and 5.1 kb are detectable in the rat brain and a variety of splice possibilities have been identified. However, a major protein species of around M(r) 120,000 predominates throughout development. Ehk-1 messenger RNA and protein levels are highest in the first postnatal week. By in situ messenger RNA hybridization the gene is expressed by all neurons of the adult brain, but mostly in the hippocampus, cerebral cortex and large neurons of the deep cerebellar nuclei, as well as the Purkinje and granular cells of the cerebellum. At earlier stages of development, transcripts are most prominent in the periventricular germinal layers of the brain. Immunohistochemistry reveals a pronounced membrane associated protein expression in immature neurons. In the adult animal, peak reactivity was found in the neuropil with sparing of most perikarya. The spatial and temporal pattern of ehk-1 gene expression suggests a role in both the development and maintenance of differentiated neurons of the central nervous system.
Resumo:
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state.
Resumo:
The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES), showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.
Resumo:
Purpose/Objective: The family of histone deacetylases comprises 18 members in mammals, among which seven sirtuins (SIRT1-7). Sirtuins are NADP-dependent enzymes that have been involved in the control of cell metabolism, proliferation and survival. The expression pattern of sirtuins and their influence on host response to microbial infection remain largely unknown. The aim of the study was to analyze the expression of SIRT1-7 and to address the effects of SIRT1/2 inhibition on innate immune responses in vitro and in vivo.. Materials and methods: in vitro: Bone marrow (BM), BM-derived macrophages (BMDMs) and dendritic cells (BMDCs) and RAW 264.7 and J774.1 macrophage cell lines were stimulated for 0, 2, 6 and 18 h with LPS, Pam3CSK4 and CpG ODN. SIRT1-7 mRNA was quantified by real time-PCR. TNF was measured by ELISA. In vivo: BALB/c mice were challenged with LPS (350 lg i.p.) with or without a SIRT1/2 inhibitor. Blood and organs were collected after 0, 1, 4, 8 and 24 h to quantify SIRT1-7 and TNF. Mortality was assessed daily. Results: Bone marrow, macrophages and DCs express, in order of abundance, SIRT2 > > SIRT1, SIRT3 and SIRT6 > SIRT4, SIRT5 and SIRT7. Microbial products decrease the expression of all sirtuins except SIRT6 in a time dependent manner in BMDMs (0_24 h). SIRT2 is the most expressed sirtuin also in the liver, kidney (together with SIRT3) and spleen. Upon LPS challenge, SIRT1, SIRT3, SIRT4 and SIRT7 mRNA levels decrease in the liver (from 4 h to 24 h), whereas SIRT1-7 mRNA levels decrease within 1 h in both kidney and spleen. Pharmacological inhibition of SIRT1/2 decreases TNF production by macrophages stimulated with LPS, Pam3CSK4 and CpG ODN (n = 6; P < 0.001). In agreement, prophylactic treatment with a SIRT1/2 inhibitor decreases TNF production (n = 8; P = 0.04) and increases survival (n = 13, P = 0.03) of mice challenged with LPS. Conclusions: Sirtuins are expressed in innate immune cells. Inhibition of SIRT1/2 activity decreases cytokine production by macrophages and protects from endotoxemia, suggesting that sirtuin inhibitors may represent novel adjunctive therapy for treating inflammatory disorders such as sepsis.
Resumo:
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10(-4), OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10(-5), OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
Resumo:
Introduction: Testing for HIV tropism is recommended before prescribing a chemokine receptor blocker. To date, in most European countries HIV tropism is determined using a phenotypic test. Recently, new data have emerged supporting the use of a genotypic HIV V3-loop sequence analysis as the basis for tropism determination. The European guidelines group on clinical management of HIV-1 tropism testing was established to make recommendations to clinicians and virologists. Methods: We searched online databases for articles from Jan 2006 until March 2010 with the terms: tropism or CCR5-antagonist or CCR5 antagonist or maraviroc or vicriviroc. Additional articles and/or conference abstracts were identified by hand searching. This strategy identified 712 potential articles and 1240 abstracts. All were reviewed and finally 57 papers and 42 abstracts were included and used by the panel to reach a consensus statement. Results: The panel recommends HIV-tropism testing for the following indications: i) drug-naïve patients in whom toxicity or limited therapeutic options are foreseen; ii) patients experiencing therapy failure whenever a treatment change is considered. Both the phenotypic Enhanced Trofile assay (ESTA) and genotypic population sequencing of the V3-loop are recommended for use in clinical practice. Although the panel does not recommend one methodology over another it is anticipated that genotypic testing will be used more frequently because of its greater accessibility, lower cost and shorter turnaround time. The panel also provides guidance on technical aspects and interpretation issues. If using genotypic methods, triplicate PCR amplification and sequencing testing is advised using the G2P interpretation tool (clonal model) with an FPR of 10%. If the viral load is below the level of reliable amplification, proviral DNA can be used, and the panel recommends performing triplicate testing and use of an FPR of 10%. If genotypic DNA testing is not performed in triplicate the FPR should be increased to 20%. Conclusions: The European guidelines on clinical management of HIV-1 tropism testing provide an overview of current literature, evidence-based recommendations for the clinical use of tropism testing and expert guidance on unresolved issues and current developments. Current data support both the use of genotypic population sequencing and ESTA for co-receptor tropism determination. For practical reasons genotypic population sequencing is the preferred method in Europe.
Resumo:
Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1.
Resumo:
PURPOSE: Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. MATERIALS AND METHODS: Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. RESULTS: GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. CONCLUSIONS: Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.
Resumo:
Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.
Resumo:
GLP-1 protects β-cells against apoptosis by still incompletely understood mechanisms. In a recent study, we searched for novel anti-apoptotic pathways by performing comparative transcriptomic analysis of islets from Gipr-/-;Glp-1r-/- mice, which show increased susceptibility to cytokine-induced apoptosis. We observed a strong reduction in IGF-1R expression in the knockout islets suggesting a link between the gluco-incretin and IGF-1R signaling pathways. Using MIN6 and primary islet cells, we demonstrated that GLP-1 strongly stimulates IGF-1R expression and that activation of the IGF-1R/Akt signaling pathway required active secretion of IGF-2 by the β-cells. We showed that inactivation of the IGF-1 receptor gene in β-cells or preventing its up-regulation by GLP-1, as well as suppressing IGF-2 expression or action, blocked the protective effect of GLP-1 against cytokine-induced apoptosis. Thus, an IGF-2/IGF-1 receptor autocrine loop operates in β-cells and GLP-1 increases its activity by enhancing IGF-1R expression and by stimulating IGF-2 secretion. This mechanism is required for GLP-1 to protect β-cells against apoptosis.
Resumo:
The mechanisms underlying the increased risk of cardiovascular disease associated with diabetes mellitus (DM) are not fully defined. Insulin resistance in human metabolic syndrome patients is associated with decreased expression of the insulin receptor substrate-2- (Irs2-) AKT2 axis in mononuclear leukocytes (MLs). Moreover, acute coronary syndrome (ACS) has been linked through genome-wide association studies to the 2q36-q37.3 locus, which contains the Irs1 gene. Here, we investigated the expression of insulin-signaling pathway genes in MLs from patients with DM, ACS, and ACS plus DM. Quantitative real-time PCR expression studies showed no differences in the mRNA levels of Irs2, Akt2, and Akt1 among all patients. However, Irs1 mRNA expression was significantly increased in patients with ACS-diabetics and nondiabetics-compared with diabetic patients without ACS (P < .02 and P < .005, resp.). The present study reveals for the first time an association between increased Irs1 mRNA levels in MLs of patients with ACS which is not related to DM.
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
The determination of protein-protein interactions and their role in diverse pathophysiological processes is a promising approach to the identification of molecules of therapeutic potential. This paper describes the identification of peptidic CCR5 receptor ligands as potential drug leads against HIV-1 infection using in vitro evolution based on phage display. A phage-displayed peptide library was used to select for anti-CCR5 peptide. Further in vitro evolution of the peptide by exon shuffling was performed to identify peptides with optimized characteristics for CCR5 receptor. This peptide inhibited HIV coreceptor activity in a cell fusion assay with an IC50 of 5 microM. It did not exhibit either agonistic or antagonistic activity on CCR5 in the concentration range used. To our knowledge, this is a first report that describes the identification of peptide ligands specific to the CCR5 receptor from a phage-displayed library and the maturation of the selected peptide sequence by gene shuffling.
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
We have explored in vitro the mechanism by which human immunodeficiency virus, type 1 (HIV-1) induces cell death of primary CD4+ T cells in conditions of productive infection. Although HIV-1 infection primed phytohemagglutinin-activated CD4+ T cells for death induced by anti-CD95 antibody, T cell death was not prevented by a CD95-Fc decoy receptor, nor by decoy receptors of other members of the TNFR family (TNFR1/R2, TRAILR1/R2/OPG, TRAMP) or by various blocking antibodies, suggesting that triggering of death receptors by their cognate ligands is not involved in HIV-induced CD4 T cell death. HIV-1 induced CD4 T cell shrinkage, cell surface exposure of phosphatidylserine, loss of mitochondrial membrane potential (Deltapsim), and mitochondrial release of cytochrome c and apoptosis-inducing factor. A typical apoptotic phenotype (nuclear chromatin condensation and fragmentation) only occurred in around half of the dying cells. Treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a broad spectrum caspase inhibitor, prevented nuclear chromatin condensation and fragmentation in HIV-infected CD4+ T cells and in a cell-free system (in which nuclei were incubated with cytoplasmic extracts from the HIV-infected CD4+ T cells). Nevertheless, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not prevent mitochondrial membrane potential loss and cell death, suggesting that caspases are dispensable for HIV-mediated cell death. Our findings suggest a major role of the mitochondria in the process of CD4 T cell death induced by HIV, in which targeting of Bax to the mitochondria may be involved.