999 resultados para Total mass


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biogenic opal and organic carbon vertical rain rates in sediment cores reveal a strong cyclicity in the productivity of the upwelling system off presently arid northern Chile during the last 100,000 years. Changes in productivity are found to be in phase with the precessional cycle (~20,000 years) and with inputs of iron from the continent. During austral summer insolation maxima, increased precipitation and river runoff in the region appear to have brought high inputs of iron, mainly from the Andes, to the coastal ocean enhancing primary productivity there. We interpret our results as providing evidence for iron control of past productivity in this upwelling system and for a tight link between productivity and orbital forcing at midlatitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertical fluxes of 239+240Pu and 241Am and temporal changes in their inventories in the northwestern Mediterranean Sea have been examined through high-resolution water column sampling coupled with direct measurements of the vertical flux of particle-bound transuranics using time-series sediment traps. Water column profiles of both radionuclides showed well-defined sub-surface maxima (2391240Pu between 100-400 m; 241Am at 100-200 m and 800 m), the depths of which are a result of the different biogeochemical scavenging behavior of the two radionuclides. Comparison of deep water column (0-2,000 m) transuranic inventories with those derived from earlier measurements demonstrate that the total 2391240Pu inventory had not substantially changed between 1976-1990 whereas 241Am had decreased by approximately 24%. Enhanced scavenging of 241Am and a resultant, more rapid removal from the water column relative to 239+240Pu was also supported by the observation of elevated Am/Pu activity ratios in sinking particles collected in sediment traps at depth. Direct measurements of the downward flux of particulate 239+240Pu and 241Am compared with transuranic removal rates derived from observed total water column inventory differences over time, show that particles sinking out of deep waters (1,000-2,000 m) could account for 26-72% of the computed total annual 239+240Pu loss and virtually all of the 241Am removal from the water column. Upper water column (0-200 m) residence times based on direct flux measurements ranged from 20-30 yr for 239+240Pu and 5-10 yr for 241Am. The observation that 241Am/239+240Pu activity ratios in unfiltered Mediterranean seawater are six times lower than those in the north Pacific suggests the existence of a specific mechanism for enhanced scavenging and removal of 241Am from the generally oligotrophic waters of the open Mediterranean. It is proposed that atmospheric inputs of aluminosilicate particles transported by Saharan dust events which frequently occur in the Mediterranean region could enhance the geochemical scavenging and resultant removal of 241Am to the sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time deep-sea mooring stations with sediment traps were deployed in the northeast Black Sea. One sediment trap for long-term studies was located at Station 1 (44°15'N, 37°43'E, deployment depth 1800 m, depth 1900 m). The trap collected sinking sedimentary material from January to May 1998. Material collectors were changed every 15 days. Other stations with sediment traps for short-term studies (September-October 1999) were located on the shelf: Station 2 (44°16'N, 38°37'E, deployment depth 45 m, depth 50 m) and on the bottom of the canyon: Station 3 (44°16'N, 38°22'E, deployment depth 1145 m, depth 1150 m), Station 4 (44°11'N, 38°21'E, deployment depths 200, 1550, 1650 m, depth 1670 m). Collected material indicates that vertical particle fluxes are controlled by seasonal changes of in situ production and by dynamics of terrigenous matter input. Higher vertical particle flux of carbonate and biogenic silica was in spring due to bloom of plankton organisms. Maximum of coccolith bloom is in April-May. Bloom of diatoms begins in March. In winter and autumn lithogenic material dominates in total flux. Its amount strongly depends on storms and river run-off. Suspended particle material differs from surface shelf sediments by finer particles (mainly clay fraction) and high content of clay minerals and biogenic silica. This material may form lateral fluxes with higher concentration of particles transported along the bottom of deep-sea canyons from the shelf to the deep basin within the nepheloid layer. In winter such transportation of sedimentary material is more intensive due to active vertical circulation of water masses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mean residence time of 234Th associated with suspended matter in the Kara Sea was calculated from distributions of dissolved and suspended 234Th. Integral particulate fluxes at different levels were estimated for two stations. The flux increases only in the pycnocline; below it changes insignificantly. Two maxima of differential fluxes are noted in vertical profiles: in the surface layer where primary production is maximal, and in the interface layer where zooplankton realizing active transport of suspended matter is usually concentrated. Differential fluxes were determined at 10 stations; their space distribution is controlled by primary production, which depends usually on turbidity of river water in estuaries.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador: