867 resultados para Titanium (Ti) machining
Resumo:
Layered perovskite oxides of the formula ACa~,La,Nb3-,Ti,010 (A = K, Rb, Cs and 0 < x d 2) have been prepared. The members adopt the structures of the parent ACazNb3010. Interlayer alkali cations in the niobium-titanium oxide series can be ion-exchanged with Li+, Na+, NH4+, or H+ to give new derivatives. Intercalation of the protonated derivatives with organic bases reveals that the Bronsted acidity of the solid solution series, HC~ ~ , L ~ ,N~ ~ , T ~ ,dOep~eOnd, s on the titanium content. While the x = 1 member (HCaLaNbzTiOlo) is nearly as acidic as the parent HCazNb3010, the x = 2 member (HLazNbTizOlo) is a weak acid hardly intercalating organic bases with pKa - 11.3. The variation of acidity is probably due to an ordering of Nb/Ti atoms in the triple octahedral perovskite slabs, [Ca~,La,Nb~,Ti,0~0], such that protons are attached to NbO6 octahedra in the x = 1 member and to Ti06 octahedra in the x = 2 member.
Resumo:
Texture development in commercially pure titanium during equal channel angular extrusion (ECAE) through Routes A, Be and C has been studied up to three passes at 400 C. Textures were measured using X-ray diffraction, while the microstructural analyses were performed using electron back-scattered diffraction as well as transmission electron microscopy. Occurrences of dynamic restoration processes (recovery and recrystallization) were clearly noticed at all levels of deformations. Finally, the textures were simulated using a viscoplastic polycrystal self-consistent (VPSC) model. Simulations were performed incorporating basal, prismatic and pyramidal slip systems as well as tensile and compressive twinning. The simulated textures corroborate well with experimental textures in spite of the occurrence of dynamic restoration processes. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We describe the synthesis structures and dielectric properties of new perovskite oxides of the formula (Ba3MTiMO9)-Ti-III-O-V for M-III = Fe Ga Y Lu and M-V = Nb Ta Sb While M-V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M-III/Ti/M-V metal-oxygen octahedra are corner connected the M-V = Sb oxides show a distinct preference for the 6H structure where Sb-V/Ti-IV metal-oxygen octahedra share a common face forming (Sb Ti)O-9 dimers that are corner-connected to the (MO6)-O-III octahedra The preference of antimony oxides (Sb-V 4d(10)) for the 6H structure which arises from a special Sb-V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb-V/Ta-V d(0) atoms which prefer similar to 180 degrees Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M-V-O oxides in general The dielectric properties reveal a significant difference among Mill members All the oxides with the 3C structure excepting those with Mill = Fe show a normal low loss dielectric behaviour with epsilon = 20-60 in the temperature range 50-400 degrees C the M-III = Fe members with this structure (M-V = Nb Ta) display a relaxor-like ferroelectric behaviour with large E values at frequencies <= 1 MHz (50-500 degrees C) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Electron diffraction studies were carried out to establish the icosahedral phase formation in rapidly quenched Ti-37 at% Mn and Ti-24 at% Mn-13 at% Fe alloys. Distortions in the diffraction spots and diffuse intensities in the diffraction patterns were investigated. The existence of a rational approximant structure and a decagonal like phase are also reported.
Resumo:
Minor addition of B to the Ti-6Al-4V alloy reduces the prior beta grain size by more than an order of magnitude. TiB formed in-situ in the process has been noted to decorate the grain boundaries. This microstructural modification influences the mechanical behavior of the Ti-6Al-4V alloy significantly. In this paper, an overview of our current research on tensile properties, fracture toughness as well as notched and un-notched fatigue properties of Ti-6Al-4V-xB with x varying between 0.0 to 0.55 wt.% is presented. A quantitative relationship between the microstructural length scales and the various mechanical properties have been developed. Moreover, the effect of the presence of hard and brittle TiB has also been studied.
Resumo:
A structural investigation of cubic oxides (space group I23) of the formula Bi(26-x)M(x)O(40-delta) (M = Ti, Mn, Fe, Co, Ni and Pb) related to the Y-Bi2O3 phase has been carried out by the Rietveld profile analysis of high-resolution X-ray powder diffraction data in order to establish the cation distributions. Compositional dependence of the cation distribution has been examined in the case of Bi26-xCoxO40-delta (1 < x < 16). The study reveals that in Bi(26-X)M(X)O(40-delta) with M = Ti, Mn, Fe, Co or Pb, the M cations tend to occupy tetrahedral (2a) sites when x < 2 while the octahedral (24f) sites are shared by the excess Co or Ni cations with Bi atoms when x > 2. Also experimental magnetic moments of Mn, Co and Ni derivatives have been used to establish the valence state and distribution of these cations.
Resumo:
The insertion reactions of zirconium(IV) n-butoxide and titanium(IV) n-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)(4) (1bTi) and Zr(OMe)(4) (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.
Resumo:
Uniaxial compression tests were conducted on Ti-6Al-4V specimens in the strain-rate range df 0.001 to 1 s(-1) and temperature range of 298 to 673 K. The stress-strain curves exhibited a peak flow stress followed by flow softening. Up to 523 K, the specimens cracked catastrophically after the flow softening started. Adiabatic shear banding was observed in this regime. The fracture surface exhibited both mode I and II fracture features. The state of stress existing in a compression test specimen when bulging occurs is responsible for this fracture. The instabilities observed in the present tests are classified as ''geometric'' in nature and are state-of-stress dependant, unlike the ''intrinsic'' instabilities, which are dependant on the dynamic constitutive behavior of the material.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
Compressive stress-strain curves have been generated over a range of temperatures (900-1100-degrees-C and strain rates (0.001-100 s-1) for two starting structures consisting of lath alpha2 and equiaxed alpha2 in a Ti-24Al-11Nb alloy. The data from these tests have been analysed in terms of a dynamic model for processing. The results define domains of strain rate and temperature in which dynamic recrystallization of alpha2 occurs for both starting structures. The rate controlling process for dynamic recrystallization is suggested to be cross-slip in the alpha2 phase. A region of processing instability has also been defined within which shear bands form in the lath structure. Recrystallization of the beta phase is shown to occur for different combinations of strain rate and temperature from those in which the alpha2 phase recrystallizes dynamically
Resumo:
Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
brusive Jet Machining (AJM) or Micro Blast Machining is a non-traditional machining process, wherein material removal is effected by the erosive action of a high velocity jet of a gas, carrying fine-grained abrasive particles, impacting the work surface. The AJM process differs from conventional sand blasting in that the abrasive is much finer and the process parameters and cutting action are carefully controlled. The process is particularly suitable to cut intricate shapes in hard and brittle materials which are sensitive to heat and have a tendency to chip easily. In other words, AJM can handle virtually any hard or brittle material. Already the process has found its ways Into dozens of applications; sometimes replacing conventional alternatives often doing jobs that could not be done in any other way. This paper reviews the current status of this non-conventional machining process and discusses the unique advantages and possible applications.
Resumo:
In this investigation, the influence of microstructure on the high temperature creep behaviour of Ti-24Al-11Nb alloy has been studied. Different microstructures are produced by devising suitable heat treatments from the beta phase field. Creep tests are conducted in the temperature range of 923-1113 K, over a wide stress range at each temperature, employing the impression creep technique. The creep behaviour is found tb be sensitive to the crystallographic texture as well as to the details of microstructure. Best creep resistance is shown when the microstructure contains smaller alpha(2) plates and a lower beta volume fraction. This can be understood in terms of the dislocation barriers offered by alpha(2) beta boundaries and the case of plastic flow in the beta phase at high temperatures.
Resumo:
We study the generation of coherent optical phonons in spin-frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7, and Tb2Ti2O7 using femtosecond laser pulses (65 fs, 1.57 eV) in degenerate time-resolved transmission experiments as a function of temperature from 4 to 296 K. At 4 K, two coherent phonons are observed at similar to 5.3 THz (5.0 THz) and similar to 9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7), whereas three coherent phonons are generated at similar to 5.0, 8.6, and 9.7 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of lower-energy coherent phonon mode, indicating a subtle structural change at 110 K. Another important observation is a phase difference of pi between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes could be different in nature, unlike a purely impulsive or displacive mechanism.