943 resultados para Time-Fractional Diffusion-Wave Problem
Resumo:
In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In the case of a crossover between two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface, although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical models and experiments.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
Aim: Diffusion weighted magnetic resonance imaging (MRI) is now widely used in human brain diagnosis.1 To date molecular mechanisms underlying changes in Apparent Diffusion Coefficient (ADC) signals remain poorly understood. AQP4, localized to astrocytes, is one of the most highly expressed cerebral AQPs.2 AQP4 is involved in water movement within the cell membrane of cultured astrocytes.3 We hypothesize that AQP4 contributes to water diffusion and underlying ADC values in normal brain. Methods: We used an RNA interference (RNAi) protocol in vivo, to acutely knockdown expression of AQP4 in rat brain and to determine whether this was associated with changes in brain ADC values using MRI protocols as previously described.4 RNAi was performed using specific small interference RNA (siRNA) against AQP4 (siAQP4) and a non-targeted-siRNA (siGLO) as a control. The specificity and efficiency of the siAQP4 were first tested in vitro in astrocyte and hippocampal slice cultures. In vivo, siRNAs were injected into the rat cortex 3d prior to MRI acquisition and AQP4 was assessed by western blot (n=4) and immunohistochemistry (n=6). Histology was performed on adjacent slices. Results: siAQP4 application on primary astrocyte cultures induced a 76% decrease in AQP4 expression after 4 days. In hippocampal slice cultures; we also found a significant decrease in AQP4 expression in astrocytes after siAQP4. In vivo, injection of non-targeted siRNA (siGLO) tagged with CY3 allowed us to show that GFAP positive cells (astrocytes) were positively stained with CY3-siGLO, showing efficient transfection. Western blot and immunohistochemical analysis showed that siAQP4 induced a ~30% decrease in AQP4 expression without modification of tissue properties or cell death. After siAQP4 treatment, a significant decrease in ADC values (~50%) were observed without altered of T2 values. Conclusions: Together these results suggest that AQP4 reduces water diffusion through the astrocytic plasma membrane and decreases ADC values. Our findings demonstrate for the first time that astrocytic AQP4 contributes significantly to brain water diffusion and ADC values in normal brain. These results open new avenues to interpretation of ADC values under normal physiological conditions and in acute and chronic brain injuries.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
Thin films of hydrogenated amorphous silicon (a‐Si:H), deposited by square wave modulated (SQWM) rf silane discharges, have been studied through spectroscopic and real time phase modulated ellipsometry. The SQMW films obtained at low mean rf power density (19 mW/cm2) have shown smaller surface roughness than those obtained in standard continuous wave (cw) rf discharges. At higher rf powers (≥56 mW/cm2), different behaviors depending on the modulating frequency have been observed. On the one hand, at low modulating frequencies (<40 Hz), the SQWM films have shown a significant increase of porosity and surface roughness as compared to cw samples. On the other, at higher modulating frequencies, the material density and roughness have been found to be similar in SQWM and cw films. Furthermore, the deposition rate of the films show more pronounced increases with the modulating frequency as the rf power is increased. Experimental results are discussed in terms of plasma negative charged species which can be relatively abundant in high rf power discharges and cause significant effects on the deposited layers through polymers, clusters, and powder formation.
Resumo:
A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.
Resumo:
The tunneling approach to the wave function of the Universe has been recently criticized by Bousso and Hawking who claim that it predicts a catastrophic instability of de Sitter space with respect to pair production of black holes. We show that this claim is unfounded. First, we argue that different horizon size regions in de Sitter space cannot be treated as independently created, as they contend. And second, the WKB tunneling wave function is not simply the inverse of the Hartle-Hawking one, except in very special cases. Applied to the related problem of pair production of massive particles, we argue that the tunneling wave function leads to a small constant production rate, and not to a catastrophe as the argument of Bousso and Hawking would suggest.
Resumo:
A simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information, agents decide whether to upgrade their level or not, balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
The usual development of the continuous-time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper, we address the theoretical setting of nonindependent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case, some interesting features arise, such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.
Resumo:
Exact solutions to FokkerPlanck equations with nonlinear drift are considered. Applications of these exact solutions for concrete models are studied. We arrive at the conclusion that for certain drifts we obtain divergent moments (and infinite relaxation time) if the diffusion process can be extended without any obstacle to the whole space. But if we introduce a potential barrier that limits the diffusion process, moments converge with a finite relaxation time.
Resumo:
In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.
Resumo:
There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.