897 resultados para Tibetan sheep
Resumo:
Comparative radiation hybrid (RH) maps of individual ovine chromosomes are essential to identify genes governing traits of economic importance in sheep, a livestock species for which whole genome sequence data are not yet available. The USUoRH5000 radiation hybrid panel was used to generate a RH map of sheep chromosome 10 (OAR10) with 59 markers that span 1,422 cR over an estimated 92 Mb of the chromosome, thus providing markers every 2 Mb (equivalent to every 24 cR). The markers were derived from 46 BAC end sequences (BESs), a single EST, and 12 microsatellites. Comparative analysis showed that OAR10 shares remarkable conservation of gene order along the entire length of cattle chromosome 12 and that OAR10 contains four major homologous synteny blocks, each related to segments of the homologous human chromosome 13. Extending the comparison to the horse, dog, mouse, and chicken genome showed that these blocks share conserved synteny across species.
Resumo:
Sheep breeds show a broad spectrum of different horn phenotypes. In most modern production breeds, sheep are polled (absence of horns), whereas horns occur mainly in indigenous breeds. Previous studies mapped the responsible locus to the region of the RXFP2 gene on ovine chromosome 10. A 4-kb region of the 3'-end of RXFP2 was amplified in horned and polled animals from seven Swiss sheep breeds. Sequence analysis identified a 1833-bp genomic insertion located in the 3'-UTR region of RXFP2 present in polled animals only. An efficient PCR-based genotyping method to determine the polled genotype of individual sheep is presented. Comparative sequence analyses revealed evidence that the polled-associated insertion adds a potential antisense RNA sequence of EEF1A1 to the 3'-end of RXFP2 transcripts.
Resumo:
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.
Resumo:
Purpose: The purpose of this study was to evaluate the bone formation capability of polyetheretherketone (PEEK) and carbon fiber-reinforced PEEK (CFR-PEEK) implants coated with different titanium and hydroxyapatite plasma-sprayed layers after 2 and 12 weeks. Methods: In six sheep 108 implants were placed in the pelvis. Altogether six different surface modifications were tested. After 2 and 12 weeks, n = 3 implants per group were examined histologically and n = 6 implants per group were tested by a pull-out test. Results: Biomechanically (p = 0.001) as well as histologically (p > 0.05) surface coating of PEEK/CFR-PEEK led to an increase of osseointegration from 2 to 12 weeks. After 12 weeks, coated implants demonstrated significant (p < 0.001) higher pull-out values in comparison to uncoated implants. Overall, the double coating (titanium bond layer and hydroxyapatite top layer) showed the most favorable results after 2 and 12 weeks. Conclusions: Plasma-sprayed titanium and hydroxyapatite coatings on PEEK or CFR-PEEK demonstrated a significant improvement of osseointegration.
Resumo:
The aim of this study was to analyse the osseointegrative potential of phosphoserine-tethered dendrons when applied as surface functionalisation molecules on titanium implants in a sheep model after 2 and 8 weeks of implantation. Uncoated and dendron-coated implants were implanted in six sheep. Sandblasted and etched (SE) or porous additive manufactured (AM) implants with and without additional dendron functionalisation (SE-PSD; AM-PSD) were placed in the pelvic bone. Three implants per group were examined histologically and six implants were tested biomechanically. After 2 and 8 weeks the bone-to-implant contact (BIC) total values of SE implants (43.7 ± 12.2; 53.3 ± 9.0 %) and SE-PSD (46.7 ± 4.5; 61.7 ± 4.9 %) as well as AM implants (20.49 ± 5.1; 43.9 ± 9.7 %) and AM-PSD implants (19.7 ± 3.5; 48.3 ± 15.6 %) showed no statistically significant differences. For SE-PSD and AM-PSD a separate analysis of only the cancellous BIC demonstrated a statistically significant difference after 2 and 8 weeks. Biomechanical findings proved the overall increased stability of the porous implants after 8 weeks. Overall, the great effect of implant macro design on osseointegration was further supported by additional phosphoserine-tethered dendrons for SE and AM implants.
Resumo:
A one-year-old healthy sheep received an implant stenting the mural ('posterior') leaflet of the mitral valve. The experiment was authorized by the Cantonal Ethical Committee. The surgery was performed on the open, beating heart during cardiopulmonary bypass (CPB). Management of anaesthesia was based on isoflurane with mechanical intermittent positive pressure ventilation (IPPV) of the lungs, combined with intercostal nerve blocks and intravenous fentanyl and lidocaine. Marked cardiovascular depression occurred towards the end of CPB time and required high doses of dopamine, dobutamine, lidocaine and ephedrine to allow for weaning off the CPB pump. Moreover, severe pulmonary dysfunction developed when IPPV was re-initiated after CPB. Hypoxaemia persisted throughout the recovery from general anaesthesia. Multiple organ failure developed gradually during the three postoperative days, leading to euthanasia of the animal. As described in this case, marked lung injury associated with some degree of failure of other vital organs may occur in sheep after CPB. Intraoperative cardiorespiratory complications when weaning-off may indicate the development of 'post-pump syndrome'.
Resumo:
Footrot is a widespread problem in Swiss sheep farming. The objectives of this study were to determine whether flocks which were clinically free from footrot carry virulent strains of Dichelobacter nodosus, and to describe the infection dynamics for flocks and individual sheep. To this purpose, a new PCR-diagnostic tool was used, which is able to distinguish benign from virulent D. nodosus. Nine farms were examined three times at intervals of 6 months. Cotton swabs were used to collect samples from the interdigital skin to analyze for the presence of virulent and benign strains of D. nodosus. Additionally, epidemiological data of the farms were collected with the aid of a standardized questionnaire. On four farms, benign strains were diagnosed at each visit; in one farm, benign strains were detected once only. Two flocks revealed sheep infected with virulent D. nodosus throughout the study but without clinical evidence of footrot. In two flocks, the virulent strains of D. nodosus were introduced into the flock during the study period. In one farm, clinical symptoms of virulent footrot were evident only two weeks after the positive finding by PCR. Only individual sheep with previously negative status, but none with previously benign status became infected with virulent strains during the study. The newly developed competitive RT PCR proved to be more sensitive than clinical diagnosis for detecting footrot infection in herds, as it unequivocally classified the four flocks as infected with virulent D. nodosus, even though they did not show clinical signs at the times of sampling. This early detection may be crucial to the success of any control program. Both new infections with virulent strains could be explained by contact with sheep from herds with virulent D. nodosus as evaluated from the questionnaires. These results show that the within-herd eradication of footrot becomes possible using the competitive PCR assay to specifically diagnose virulent D. nodosus.
Resumo:
B. Thomashefsky
Resumo:
The Tibetan Plateau (TP), including its surrounding mountain ranges, represents the largest store of ice outside the polar regions. It hosts numerous lakes as well as the head waters of major Asian rivers, on which billions of people depend, and it is particularly sensitive to climate change. The moisture transport to the TP is controlled by the Indian and Pacific monsoon and the Westerlies. Understanding the evolution of the interaction of these circulation systems requires studies on climate archives in different spatial and temporal contexts. The objective of this study is to learn more about the interannual variability of precipitation patterns across the TP and how different hydrologic systems react to different climatic factors. Aragonite shells of the aquatic gastropod Radix, which is widely distributed in the region, may represent suitable archives for inferring hydrologic and climatic signals in particularly high resolution. Therefore, sclerochronological studies of d18O and d13C ratios in Radix shells from seven lakes were conducted, each representing a different hydrologic and climatic setting, on a transect from the Pamirs across the TP. The shell patterns exhibit an increasing influence of precipitation and a decreasing influence of evaporation on the isotope compositions from west to east. d18O values of shells from lakes on the eastern and central TP (Donggi Cona, Yamdrok Yumco, Tarab Co) mirror monsoon signals, indicated by more negative values and higher variabilities compared to the more western lakes (Karakul, Bangong/Nyak, Manasarovar). In Yadang Co, located on the central southern TP, the monsoon rains did not reach the lake in the sampling year, although it is located in a region which is usually affected by monsoon circulation. The d18O values are used to differentiate the annual hydrological cycle into ice cover period, melt water period, precipitation period and evaporation period. d13C compositions in the shells particularly depend on specific habitats, which vary in biological productivity and in carbon sources. d18O and d13C patterns show a positive covariance in shells originating from large closed basins. The results show that Radix shells mirror general climatic differences between the seven lake regions. These differences reflect both regional and local climate signals in sub-seasonal resolution, without noticeable dependence on the particular lake system.
Resumo:
This study focuses on the analysis of lake sediments retrieved from the deepest part of Lake Nam Co (Tibetan Plateau). One gravity core of 115 cm length, covering the last ~ 4000 cal BP, was analyzed for geochemical and biological parameters. High organic content at ~ 4000 cal BP and the coinciding presence of pyrite framboids until ~ 2000 cal BP point to hampered decomposition of organic material due to anoxic conditions within the lake sediments. At the same time sedimentological and biological proxies suggest a rather high lake level, but still ~ 5 m below the recent one, with less saline lake water due to enhanced monsoonal activity. During this time a change in the source of organic matter to lowered input of terrestrial components is observed. A rather quick shift to a dry environment with less monsoonal influence and a lake level ~ 15 m lower than today at ~ 2000 cal BP lead to the oxygenation of sediment, the degradation of organic matter and the absence of pyrite. Oscillations of the lake level thereafter were of minor amplitude and not able to establish anoxia at the lake bottom again. A wet spell between ~ 1500 cal BP and ~ 1150 cal BP is visible in proxies referring to catchment hydrology and the ostracod-based water depth transfer function gives only a slightly elevated lake level. The last ~ 300 years are characterized by low TOC and rising TN values reflecting enhanced nutrient supply and hence an advancing influence of human activity in the catchment. Decreasing TOC/TN values point to a complete shift to almost solely aquatic biomass production. These results show that hydrological variations in terms of lake level change based on monsoonal strength can be linked to redox conditions at the lake bottom of Nam Co. Comparison with other archives over larger parts of the Tibetan Plateau and beyond exhibits a rather homogeneous climatic pattern throughout the late Holocene.
Resumo:
Magnetostratigraphy has been serving as a valuable tool for dating and confirming chronologies of lacustrine sediments in many parts of the world. Suitable paleomagnetic records on the Tibetan Plateau (TP) and adjacent areas are, however, extremely scarce. Here, we derive paleomagnetic records from independently radiocarbon-dated sediments from two lakes separated by 250 km on the southern central TP, Tangra Yumco and Taro Co. Studied through alternating field demagnetization of u-channel samples, characteristic remanent magnetization (ChRM) directions document similar inclination patterns in multiple sediment cores for the past 4000 years. Comparisons to an existing record from Nam Co, a lake 350 km east of Tangra Yumco, a varve-dated record from the Makran Accretionary Wedge, records from Lakes Issyk-Kul and Baikal, and a stack record from East Asia reveal many similarities in inclination. This regional similarity demonstrates the high potential of inclination to compare records over the Tibetan Plateau and eventually date other Tibetan records stratigraphically. PSV similarities over such a large area (>3000 km) suggest a large-scale core dynamic origin rather than small scale processes like drift of the non-dipole field often associated with PSV records.
Resumo:
The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C/ha), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C/m**2/ in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.