968 resultados para Thin films deposition
Resumo:
This paper reports on a case study of the impact of fabrication steps on InN material properties. We discuss the influence of annealing time and sequence of device processing steps. Photoluminescence (PL), surface morphology and electrical transport (electrical resistivity and low frequency noise) properties have been studied as responses to the adopted fabrication steps. Surface morphology has a strong correlation with annealing times, while sequences of fabrication steps do not appear to be influential. In contrast, the optical and electrical properties demonstrate correlation with both etching and thermal annealing. For all the studied samples PL peaks were in the vicinity of 0.7 eV, but the intensity and full width at half maximum (FWHM) demonstrate a dependence on the technological steps followed. Sheet resistance and electrical resistivity seem to be lower in the case of high defect introduction due to both etching and thermal treatments. The same effect is revealed through 1/f noise level measurements. A reduction of electrical resistivity is connected to an increase in 1/f noise level.
Resumo:
Control of magnetic properties of FeCo thin films grown by sputtering
Resumo:
Graphs of second harmonic generation coefficients and electro-optic coefficients (measured by ellipsometry, attenuated total reflection, and two-slit interference modulation) as a function of chromophore number density (chromophore loading) are experimentally observed to exhibit maxima for polymers containing chromophores characterized by large dipole moments and polarizabilities. Modified London theory is used to demonstrated that this behavior can be attributed to the competition of chromophore-applied electric field and chromophore–chromophore electrostatic interactions. The comparison of theoretical and experimental data explains why the promise of exceptional macroscopic second-order optical nonlinearity predicted for organic materials has not been realized and suggests routes for circumventing current limitations to large optical nonlinearity. The results also suggest extensions of measurement and theoretical methods to achieve an improved understanding of intermolecular interactions in condensed phase materials including materials prepared by sequential synthesis and block copolymer methods.
Resumo:
Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.
Resumo:
A high percentage of hydrocarbon (HC) emissions from gasoline vehicles occur during the cold-start period. Among the alternatives proposed to reduce these HC emissions, the use of zeolites before the three-way catalyst (TWC) is thought to be very effective. Zeolites are the preferred adsorbents for this application; however, to avoid high pressure drops, supported zeolites are needed. In this work, two coating methods (dip-coating and in situ crystallization) are optimized to prepare BETA zeolite thin films supported on honeycomb monoliths with tunable properties. The important effect of the density of the thin film in the final performance as a HC trap is demonstrated. A highly effective HC trap is prepared showing 100 % toluene retention, accomplishing the desired performance as a HC trap, desorbing propene at temperatures close to 300 °C, and remaining stable after cycling. The use of this material before the TWC is very promising, and works towards achieving the sustainability and environmental protection goals.
Resumo:
Significant effort is being devoted to the study of photoactive electrode materials for artificial photosynthesis devices. In this context, photocathodes promoting water reduction, based on earth-abundant elements and possessing stability under illumination, should be developed. Here, the photoelectrochemical behavior of CuCrO2 sol–gel thin film electrodes prepared on conducting glass is presented. The material, whose direct band gap is 3.15 eV, apparently presents a remarkable stability in both alkaline and acidic media. In 0.1 M HClO4 the material is significantly photoactive, with IPCE values at 350 nm and 0.36 V vs. RHE of over 6% for proton reduction and 23% for oxygen reduction. This response was obtained in the absence of charge extraction layers or co-catalysts, suggesting substantial room for optimization. The photocurrent onset potential is equal to 1.06 V vs. RHE in both alkaline and acidic media, which guarantees the combination of the material with different photoanodes such as Fe2O3 or WO3, potentially yielding bias-free water splitting devices.
Resumo:
Azobenzene-containing materials exhibit various photomechanical properties, including the formation of surface relief gratings (SRG) when irradiated with two interfering laser beams. In a recent study, a novel glass-forming derivative of Disperse Red 1 (DR1) with a mexylaminotriazine group was synthesized in high yield with a simple and efficient procedure, and showed the ability to form high-quality amorphous thin films with a high resistance to crystallization. Irradiation of films of this material yielded SRG with growth rates comparable to other reported azo materials. Herein, a series of closely related molecular glasses containing azobenzene chromophores with various absorption maxima ranging from 410 to 570 nm were synthesized, and their physical and photomechanical properties were studied. All materials studied showed the ability to form stable glassy phases, and irradiation with lasers emitting at various wavelengths allowed to perform a comparative study of SRG growth within a series of analogous chromophores.
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC03-79ET20435."
Resumo:
"This work was supported in part by the General Research Provision of contract between the Air Force and Space Technology Laboratories, Inc., and in part by the Office of Naval Research."
Resumo:
At head of title: Office of Naval Research. Contract Nonr-401(06), Project no. NR 356-296. Final technical report.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).