759 resultados para Textile fabrics
Resumo:
In this work the treatment of textile dyeing baths by a sequential reductive-oxidative process was evaluated, aiming its utilization in new dyeing process. The results demonstrated that reactive dyes can be easily degraded by reductive processes mediated by zero-valent iron, a fact that induces decolorizations of about 80%. Sequential photo-Fenton processes permit almost total removal of the residual color with elimination of 90% of the COD content. The reuse of treated residues permits the achievement of materials that attend practically all textile specifications, with exception of the color difference parameter (ΔE), which is unsatisfactory toward the importation standards, but adequate for the national market.
Resumo:
The kinetics of biodegradation by the fungus Ganoderma sp of textile dyes Yellow, Blue and Red Procion were studied in effluents using UV-Vis spectroscopy, Partial Least Squares Regression (PLS) and univariate analysis. The kinetic of the reactions were founded intermediate between first and second orders and the rate constants were calculated. The biodegradation after 72 h at 28 ºC were 33.6, 43.5 and 57.7% for the dyes Yellow, Blue and Red Procion, respectively. The quantitative analysis of the effluent by HPLC method can not be used without previous separation.
Resumo:
Russia has been one of the fastest developing economic areas in the world. Based on the GDP, the Russian economy grew evenly since the crisis in 1998 up till 2008. The growth in the gross domestic product has annually been some 5–10%. In 2007, the growth reached 8.1%, which is the highest figure after the 10% growth in 2000. Due to the growth of the economy and wage levels, purchasing power and consumption have been strongly increasing. The growing consumption has especially increased the imports of durables, such as passenger cars, domestic appliances and electronics. The Russian ports and infrastructure have not been able to satisfy the growing needs of exports and imports, which is why quite a large share of Russian foreign trade is going through third countries as transit transports. Finnish ports play a major role in transit transports to and from Russia. About 15% of the total value of Russian imports was transported through Finland in 2008. The economic recession that started in autumn 2008 and continues to date has had an impact on the economic development of Russia. The export income has decreased, mainly due to the reduced world market prices of energy products (oil and gas) and raw minerals. Investments have been postponed, getting credit is more difficult than before, and the ruble has weakened in relation to the euro and the dollar. The imports are decreasing remarkably, and are not forecast to reach the 2008 volumes even in 2012. The economic crisis is reflected in Finland's transit traffic. The volume of goods transported through Finland to and from Russia has decreased almost in the same proportion as the imports of goods to Russia. The biggest risk threatening the development of the Russian economy over long term is its dependence on export income from oil, gas, metals, minerals and forest products, as well as the trends of the world market prices of these products. Nevertheless, it is expected that the GDP of Russia will start to grow again in the forthcoming years due to the increased demand for energy products and raw minerals in the world. At the same time, it is obvious that the world market prices of these products will go up with the increasing demand. The increased income from exports will lead to a growth of imports, especially those of consumer goods, as the living standard of Russian citizens rises. The forecasts produced by the Russian Government concerning the economic development of Russia up till 2030 also indicate a shift in exported goods from raw materials to processed products, which together with energy products will become the main export goods of Russia. As a consequence, Russia may need export routes through third countries, which can be seen as an opportunity for increased transit transports through the ports of Finland. The ports competing with the ports of Finland for Russian foreign trade traffic are the Russian Baltic Sea ports and the ports of the Baltic countries. The strongest competitors are the Baltic Sea ports handling containers. On the Russian Baltic Sea, these ports include Saint Petersburg, Kaliningrad and, in the near future, the ports of Ust-Luga and possibly Vyborg. There are plans to develop Ust-Luga and Vyborg as modern container ports, which would become serious competitors to the Finnish ports. Russia is aiming to redirect as large a share as possible of foreign trade traffic to its own ports. The ports of Russia and the infrastructure associated with them are under constant development. On the other hand, the logistic capacity of Russia is not able to satisfy the continually growing needs of the Russian foreign trade. The capacity problem is emphasized by a structural incompatibility between the exports and imports in the Russian foreign trade. Russian exports can only use a small part of the containers brought in with imports. Problems are also caused by the difficult ice conditions and narrow waterways leading to the ports. It is predicted that Finland will maintain its position as a transit route for the Russian foreign trade, at least in the near future. The Russian foreign trade is increasing, and Russia will not be able to develop its ports in proportion with the increasing foreign trade. With the development of port capacity, cargo flows through the ports of Russia will grow. Structural changes in transit traffic are already visible. Firms are more and more relocating their production to Russia, for example as regards the assembly of cars and warehousing services. Simultaneously, an increasing part of transit cargoes are sent directly to Russia without unloading and reloading in Finland. New product groups have nevertheless been transported through Finland (textile products and tools), replacing the lost cargos. The global recession that started in autumn 2008 has influenced the volume of Russian imports and, consequently, the transit volumes of Finland, but the recession is not expected to be of long duration, and will thus only have a short-term impact on transit volumes. The Finnish infrastructure and services offered by the logistic chain should also be ready to react to the changes in imported product groups as well as to the change in Russian export products in the future. If the development plans of the Russian economy are realized, export products will be more refined, and the share of energy and raw material products will decrease. The other notable factor to be taken into consideration is the extremely fast-changing business environment in Russia. Operators in the logistic chain should be flexible enough to adapt to all kinds of changes to capitalise on business opportunities offered by the Russian foreign trade for the companies and for the transit volumes of Finnish ports, also in the future.
Resumo:
The discoloration and degradation of the textile dye RED GRLX-220 using the electrochemically generated ozone was investigated. Total discoloration was rapidly achieved in both acid and basic conditions. A pseudo-first order kinetics was observed for discoloration, influenced by pH and ozonation time. A considerable degree of mineralization (60%) was obtained after 30 min of ozonation in alkaline medium. The feasibility of organic matter oxidation during the ozonation process increased in both acidic and alkaline media. The toxicity decreased after the ozonation process, suggesting that the byproducts are less toxic than the parental compound.
Resumo:
In this work, cracking experiments were performed to carry out the thermal conversion of the mixture of used frying oil and textile stamping sludge in continuous reactor. The textile stamping sludge was used to catalyze the reaction of thermal cracking. The physical and chemical properties of the oil produced were analyzed. Among the results of this analysis the level of acidity in the range of 12 mg KOH/g stands out. Low levels of acidity as this particular mean better quality oil. In this regard it is important that further researches on processes of conversion of residual oil occur.
Resumo:
The removal of important textile dyes by turnip peroxidase (TNP) was evaluated. The textile effluents besides the residual dyes contain also chemical auxiliaries such as salts, dispersing and wetting agents. The effect of these was evaluated in the removal of the dyes reactive blue 21 and reactive blue 19 by TNP in synthetic effluents. A decrease of the efficency decolorization was observed. The action of the enzyme on colour removal of dye mixture was equivalent to the dyes alone. The chemical demand of oxygen in the effluent after enzymatic treatment had a significant increase in relation to the untreated effluent.
Resumo:
In this work the degradation capacity of a photo-electrocatalytic system was evaluated, mainly regarding the effect of the electrolyte solution on the degradation capacity toward a reactive textile dye. In the presence of NaCl the photo-electrochemical process shows high degradation efficiency, permitting almost total color removal in treatment of about 5 min. In view of the low degradation efficiency observed for the photocatalytic process it is possible to assume that the high degradation efficiency of the process is a function of electrochemical generation of oxidant active chlorine species, which are subsequently transformed to higher oxidant radical forms.
Resumo:
Several problems are involved the treatment plants of textile effluents, mainly the low efficiency of color removal. This paper presents an alternative of post-treatment by UV/H2O2 process, for color removal in biologically treated textile effluents. The tests were performed in a photochemical reactor and samples were taken at different times to perform analyses. Using 250 mgH2O2.L-1, 96% removal of color was verified, indicating the dyes degradation. A reduction of 84% of aromatics compounds, 90% of TSS removal, and a further reduction of the organic fraction were observed, demonstrating that the process is effective as a post-treatment of effluents from textile industries.
Resumo:
In this work the degradation of textile dyes were evaluated, using Fenton, photo-Fenton and electro-Fenton processes. Under optimized conditions Fenton and photo-Fenton processes showed high decolorization capacity of the model dyes. The electro-Fenton process was carried out in an undivided electrochemical reactor (1000 mL) equipped with a carbon-felt cathode (253 cm²) and a platinum gauze anode (6 cm²). Under optimal conditions (J: 1.6 mA cm-2, Na2SO4: 0.075 mol L-1, pH: 3) H2O2 concentration of about 60 mg L-1 was observed. The addition of Fe2+ (15 mg L-1) induces Fenton reactions that permit almost total decolorization of textile dyes.
Resumo:
1,3-propanediol is a high-value specialty chemical which has many industrial applications. Its main use is the production of the polymer polypropylene terephthalate, a thermoplastic used in the textile and automobile industries. The interest in 1,3-propanediol production from glycerol bio-conversion has increased after the employment of biodiesel by various countries, being produced by chemical synthesis from petroleum intermediates or biotechnologically by microbial fermentation. Glycerol is an abundant low-cost byproduct from biodiesel refineries, and it is the only substrate that can be naturally or enzymatically converted to 1,3-propanediol by microbial fermentation. In this review, information on 1,3-propanediol's importance, production and purification are presented, along with results from recent research on glycerol microbial conversion to 1,3-propanediol. The bio-production of this intermediate compound from glycerol is very attractive both economically and environmentally, since it allows the replacement of fossil fuels by renewable resources.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.
Resumo:
Microemulsions (MEs) are thermodynamically stable systems consisting of nanosized droplets dispersed in a solvent continuous medium (known as pseudo-phase), which is immiscible with the dispersed phase. These systems consist of water, a hydrophobic solvent called "oil," an amphiphile and often, a co-surfactant that is normally a medium chain alcohol. A large number of publications describe the importance of MEs in many branches of chemistry, and there is an intensive search for new applications. In addition, MEs have been applied in many areas, including oil extraction, removal of environmental pollutants from soils and effluents, dissolution of additives in lubricants and cutting oils, cleaning processes, dyeing and textile finishing, as nanoreactors to obtain nanoparticles of metals, semiconductors, superconductors, magnetic and photographic materials, and latex. However, only some studies indicate the potential applications of MEs in food and even fewer evaluate their chemical behavior. Potential applications of MEs in food comprise dissolution of lipophilic additives, stabilization of nutrients and biologically active compounds, using as an antimicrobial agent and to maximize the efficiency of food preservatives. This work consists of a literature review focusing on composition and physical and chemical characteristics of microemulsions. Despite the small number of studies on the subject reported in the literature, we demonstrate some potential applications of MEs in food chemistry.
Resumo:
Starch is the most important carbohydrate storage in plants. It is a raw material with diverse botanical origins, and is used by the food, paper, chemical, pharmaceutical, textile and other industries. In this work, native starches of Paraná pine seeds (pinhão) (Araucária angustiofolia, Bert O. Ktze) and european chestnut seeds (Castanea sativa, Mill) were studied by thermoanalytical techniques: thermo-gravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), as well as X-ray powder patterns diffractometry. Apparent and total amylose content was also determined.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.