905 resultados para Text summarization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesis que se presenta tiene como propósito la construcción automática de ontologías a partir de textos, enmarcándose en el área denominada Ontology Learning. Esta disciplina tiene como objetivo automatizar la elaboración de modelos de dominio a partir de fuentes información estructurada o no estructurada, y tuvo su origen con el comienzo del milenio, a raíz del crecimiento exponencial del volumen de información accesible en Internet. Debido a que la mayoría de información se presenta en la web en forma de texto, el aprendizaje automático de ontologías se ha centrado en el análisis de este tipo de fuente, nutriéndose a lo largo de los años de técnicas muy diversas provenientes de áreas como la Recuperación de Información, Extracción de Información, Sumarización y, en general, de áreas relacionadas con el procesamiento del lenguaje natural. La principal contribución de esta tesis consiste en que, a diferencia de la mayoría de las técnicas actuales, el método que se propone no analiza la estructura sintáctica superficial del lenguaje, sino que estudia su nivel semántico profundo. Su objetivo, por tanto, es tratar de deducir el modelo del dominio a partir de la forma con la que se articulan los significados de las oraciones en lenguaje natural. Debido a que el nivel semántico profundo es independiente de la lengua, el método permitirá operar en escenarios multilingües, en los que es necesario combinar información proveniente de textos en diferentes idiomas. Para acceder a este nivel del lenguaje, el método utiliza el modelo de las interlinguas. Estos formalismos, provenientes del área de la traducción automática, permiten representar el significado de las oraciones de forma independiente de la lengua. Se utilizará en concreto UNL (Universal Networking Language), considerado como la única interlingua de propósito general que está normalizada. La aproximación utilizada en esta tesis supone la continuación de trabajos previos realizados tanto por su autor como por el equipo de investigación del que forma parte, en los que se estudió cómo utilizar el modelo de las interlinguas en las áreas de extracción y recuperación de información multilingüe. Básicamente, el procedimiento definido en el método trata de identificar, en la representación UNL de los textos, ciertas regularidades que permiten deducir las piezas de la ontología del dominio. Debido a que UNL es un formalismo basado en redes semánticas, estas regularidades se presentan en forma de grafos, generalizándose en estructuras denominadas patrones lingüísticos. Por otra parte, UNL aún conserva ciertos mecanismos de cohesión del discurso procedentes de los lenguajes naturales, como el fenómeno de la anáfora. Con el fin de aumentar la efectividad en la comprensión de las expresiones, el método provee, como otra contribución relevante, la definición de un algoritmo para la resolución de la anáfora pronominal circunscrita al modelo de la interlingua, limitada al caso de pronombres personales de tercera persona cuando su antecedente es un nombre propio. El método propuesto se sustenta en la definición de un marco formal, que ha debido elaborarse adaptando ciertas definiciones provenientes de la teoría de grafos e incorporando otras nuevas, con el objetivo de ubicar las nociones de expresión UNL, patrón lingüístico y las operaciones de encaje de patrones, que son la base de los procesos del método. Tanto el marco formal como todos los procesos que define el método se han implementado con el fin de realizar la experimentación, aplicándose sobre un artículo de la colección EOLSS “Encyclopedia of Life Support Systems” de la UNESCO. ABSTRACT The purpose of this thesis is the automatic construction of ontologies from texts. This thesis is set within the area of Ontology Learning. This discipline aims to automatize domain models from structured or unstructured information sources, and had its origin with the beginning of the millennium, as a result of the exponential growth in the volume of information accessible on the Internet. Since most information is presented on the web in the form of text, the automatic ontology learning is focused on the analysis of this type of source, nourished over the years by very different techniques from areas such as Information Retrieval, Information Extraction, Summarization and, in general, by areas related to natural language processing. The main contribution of this thesis consists of, in contrast with the majority of current techniques, the fact that the method proposed does not analyze the syntactic surface structure of the language, but explores his deep semantic level. Its objective, therefore, is trying to infer the domain model from the way the meanings of the sentences are articulated in natural language. Since the deep semantic level does not depend on the language, the method will allow to operate in multilingual scenarios, where it is necessary to combine information from texts in different languages. To access to this level of the language, the method uses the interlingua model. These formalisms, coming from the area of machine translation, allow to represent the meaning of the sentences independently of the language. In this particular case, UNL (Universal Networking Language) will be used, which considered to be the only interlingua of general purpose that is standardized. The approach used in this thesis corresponds to the continuation of previous works carried out both by the author of this thesis and by the research group of which he is part, in which it is studied how to use the interlingua model in the areas of multilingual information extraction and retrieval. Basically, the procedure defined in the method tries to identify certain regularities at the UNL representation of texts that allow the deduction of the parts of the ontology of the domain. Since UNL is a formalism based on semantic networks, these regularities are presented in the form of graphs, generalizing in structures called linguistic patterns. On the other hand, UNL still preserves certain mechanisms of discourse cohesion from natural languages, such as the phenomenon of the anaphora. In order to increase the effectiveness in the understanding of expressions, the method provides, as another significant contribution, the definition of an algorithm for the resolution of pronominal anaphora limited to the model of the interlingua, in the case of third person personal pronouns when its antecedent is a proper noun. The proposed method is based on the definition of a formal framework, adapting some definitions from Graph Theory and incorporating new ones, in order to locate the notions of UNL expression and linguistic pattern, as well as the operations of pattern matching, which are the basis of the method processes. Both the formal framework and all the processes that define the method have been implemented in order to carry out the experimentation, applying on an article of the "Encyclopedia of Life Support Systems" of the UNESCO-EOLSS collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The huge amount of data available on the Web needs to be organized in order to be accessible to users in real time. This paper presents a method for summarizing subjective texts based on the strength of the opinion expressed in them. We used a corpus of blog posts and their corresponding comments (blog threads) in English, structured around five topics and we divided them according to their polarity and subsequently summarized. Despite the difficulties of real Web data, the results obtained are encouraging; an average of 79% of the summaries is considered to be comprehensible. Our work allows the user to obtain a summary of the most relevant opinions contained in the blog. This allows them to save time and be able to look for information easily, allowing more effective searches on the Web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the project is to analyze, experiment, and develop intelligent, interactive and multilingual Text Mining technologies, as a key element of the next generation of search engines, systems with the capacity to find "the need behind the query". This new generation will provide specialized services and interfaces according to the search domain and type of information needed. Moreover, it will integrate textual search (websites) and multimedia search (images, audio, video), it will be able to find and organize information, rather than generating ranked lists of websites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a module for the prediction of emotions in text chats in Spanish, oriented to its use in specific-domain text-to-speech systems. A general overview of the system is given, and the results of some evaluations carried out with two corpora of real chat messages are described. These results seem to indicate that this system offers a performance similar to other systems described in the literature, for a more complex task than other systems (identification of emotions and emotional intensity in the chat domain).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a Text Summarisation tool, compendium, capable of generating the most common types of summaries. Regarding the input, single- and multi-document summaries can be produced; as the output, the summaries can be extractive or abstractive-oriented; and finally, concerning their purpose, the summaries can be generic, query-focused, or sentiment-based. The proposed architecture for compendium is divided in various stages, making a distinction between core and additional stages. The former constitute the backbone of the tool and are common for the generation of any type of summary, whereas the latter are used for enhancing the capabilities of the tool. The main contributions of compendium with respect to the state-of-the-art summarisation systems are that (i) it specifically deals with the problem of redundancy, by means of textual entailment; (ii) it combines statistical and cognitive-based techniques for determining relevant content; and (iii) it proposes an abstractive-oriented approach for facing the challenge of abstractive summarisation. The evaluation performed in different domains and textual genres, comprising traditional texts, as well as texts extracted from the Web 2.0, shows that compendium is very competitive and appropriate to be used as a tool for generating summaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The great amount of text produced every day in the Web turned it as one of the main sources for obtaining linguistic corpora, that are further analyzed with Natural Language Processing techniques. On a global scale, languages such as Portuguese - official in 9 countries - appear on the Web in several varieties, with lexical, morphological and syntactic (among others) differences. Besides, a unified spelling system for Portuguese has been recently approved, and its implementation process has already started in some countries. However, it will last several years, so different varieties and spelling systems coexist. Since PoS-taggers for Portuguese are specifically built for a particular variety, this work analyzes different training corpora and lexica combinations aimed at building a model with high-precision annotation in several varieties and spelling systems of this language. Moreover, this paper presents different dictionaries of the new orthography (Spelling Agreement) as well as a new freely available testing corpus, containing different varieties and textual typologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El reciente crecimiento masivo de medios on-line y el incremento de los contenidos generados por los usuarios (por ejemplo, weblogs, Twitter, Facebook) plantea retos en el acceso e interpretación de datos multilingües de manera eficiente, rápida y asequible. El objetivo del proyecto TredMiner es desarrollar métodos innovadores, portables, de código abierto y que funcionen en tiempo real para generación de resúmenes y minería cross-lingüe de medios sociales a gran escala. Los resultados se están validando en tres casos de uso: soporte a la decisión en el dominio financiero (con analistas, empresarios, reguladores y economistas), monitorización y análisis político (con periodistas, economistas y políticos) y monitorización de medios sociales sobre salud con el fin de detectar información sobre efectos adversos a medicamentos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past years, an important volume of research in Natural Language Processing has concentrated on the development of automatic systems to deal with affect in text. The different approaches considered dealt mostly with explicit expressions of emotion, at word level. Nevertheless, expressions of emotion are often implicit, inferrable from situations that have an affective meaning. Dealing with this phenomenon requires automatic systems to have “knowledge” on the situation, and the concepts it describes and their interaction, to be able to “judge” it, in the same manner as a person would. This necessity motivated us to develop the EmotiNet knowledge base — a resource for the detection of emotion from text based on commonsense knowledge on concepts, their interaction and their affective consequence. In this article, we briefly present the process undergone to build EmotiNet and subsequently propose methods to extend the knowledge it contains. We further on analyse the performance of implicit affect detection using this resource. We compare the results obtained with EmotiNet to the use of alternative methods for affect detection. Following the evaluations, we conclude that the structure and content of EmotiNet are appropriate to address the automatic treatment of implicitly expressed affect, that the knowledge it contains can be easily extended and that overall, methods employing EmotiNet obtain better results than traditional emotion detection approaches.