732 resultados para Testosterone
Resumo:
Every year around 100 million male piglets are castrated in the EU, usually without anaesthesia or post-operative analgesia. This surgical intervention is painful and stressful. Several main players within the pig industry have voluntarily agreed to end the practice of surgical pig castration in the EU by 2018. One alternative to castration is entire male pig production. However, entire males behave differently than castrates, for example, by performing more mounting behaviour, which is suggested to be a welfare problem. The aim of our study was to develop a comprehensive ethogram of different types of mounting and to investigate properties, causes and consequences of mounting behaviour in finishing pigs. The study included 80 entire male and 80 female pigs from two farrowing batches born six weeks apart. Mixed sex and single-sex housing of pigs are both common in pig farming, so to ensure our study was representative, the 160 pigs were assigned to social groups of 20 in three treatments: entire male pigs only (MM, 2 groups, n = 40), entire females only (FF, 2 groups, n = 40) and entire males and females mixed together (MF, 4 groups, n = 80). Measurements took place during the final six weeks before slaughter (between 63.5 and 105.5 kg). Observations of mounting behaviour on 12 days per batch suggested that: (i) males mounted more than females, (ii) within sex, there was no effect of treatment on the amount of mounting (although the statistical power of the study to detect these effects was low), and (iii) there were individual differences in mounting that were stable over time (within sex). Classification of mounting into different categories revealed that sexual mounting was most common overall and in males but only rare in females. Compared to other types of mounting (e.g. caused by crowding or during a fight), sexual mounts lasted longer and provoked more screaming by the recipient. There were no relationships between mounting behaviour on the one hand and dominance rank in food competition tests, the circulating levels of sex hormones (oestradiol, testosterone and progesterone) at the end of the study, the health scores (lameness and scratches) or weight gain on the other hand. The stable individual differences of mounting over time suggest that mounting behaviour is a trait of the individual rather than the appearance of random outbreaks. However, these differences in mounting cannot be explained by dominance behaviour or by differences in sex hormone concentrations that could indicate the onset of puberty. Mounting behaviour and in particular sexual mounting provoked high pitched screaming of the recipients indicating that mounting is a welfare problem. For the welfare assessment of entire male pig production the performance of mounting behaviour should be considered. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.
Resumo:
Previously reported androgen receptor concentrations in rat testis and testicular cell types have varied widely. In the studies reported here a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4$\sp\circ$C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Increase in Leydig cell number during maturation appeared to account for the remainder of the increase due to the high receptor concentration in these cells. Detailed studies showed that other possible explanations for changes in receptor number (e.g. shifts in receptor concentration between the cytosol and nuclear subcellular compartments or changes in the affinity of the receptor for its ligands) were not likely.^ Androgen receptor dynamics in testicular cells showed rapid, specific uptake of ($\sp3$H) -testosterone that was easily blocked by unlabeled testosterone (RA of 7 nM in both cell types), and medroxyprogesterone acetate (RA of 28 and 16 nM in Sertoli and peritubular cells, respectively), but not as well by the anti-androgens cyproterone acetate (RA of 116 and 68 nM) and hydroxyflutamide (RA of 300 and 180 nM). The affinity of the receptor for the ligand dimethylnortestosterone was similar in the two cell types (K$\rm\sb{d}$ values of 0.78 and 0.71 nM for Sertoli and peritubular cells) and was virtually identical with the affinity of the whole testis receptor (0.89 nM). Medroxyprogesterone acetate and testosterone significantly increased nuclear androgen receptor concentration relative to untreated controls in Sertoli and peritubular cells, whereas hydroxyflutamide and cyproterone acetate did not. Despite the different embryological origins of peritubular and Sertoli cells, their responses to both androgens and anti-androgens were similar. In addition, these studies suggest that peritubular cells are as likely as Sertoli cells to be primary androgen targets. ^
Resumo:
The cause of testicular cancer is not known and recent hypotheses have suggested an altered hormonal milieu may increase the risk of testis cancer. This study examined modulation of testicular cancer risk by hormonal factors, specifically: environmental xenoestrogens (e.g. organochlorines), prenatal maternal estrogens, testosterone indices (age at puberty, severe adolescent acne, self-reported balding), sedentary lifestyle and dietary consumption of fats and phytoestrogens.^ A hospital based friend matched case-control study was conducted at the University of Texas M. D. Anderson Cancer Center in Houston, Texas, between January 1990 and October 1996. Cases had a first primary testis tumor diagnosed between age 18 to 50 years and resided in Texas, Louisiana, Oklahoma or Arkansas.^ Cases and friend controls completed a mail questionnaire and case/control mothers were contacted by phone regarding pregnancy related variables. The study population comprised 187 cases, 148 controls, 147 case mothers and 86 control mothers. Odds ratios were virtually identical whether the match was retained or dissolved, thus the analyses were conducted using unconditional logistic regression.^ Cryptorchidism was a strong risk factor for testis cancer with an age-adjusted odds ratio (OR) of 7.7 (95% confidence interval (CI): 2.3-26.3). In a final model (adjusted for age, education, and cryptorchidism), history of severe adolescent acne and self-reported balding were both significantly protective, as hypothesized. For acne (yes vs. no) the OR was 0.5 (CI: 0.3-1.0) and for balding (yes vs. no) the OR was 0.6 (CI: 0.3-1.0). Marijuana smoking was a risk factor among heavy, regular users (17 times/week, OR = 2.4; CI: 0.9-6.4) and higher saturated fat intake increased testis cancer risk (saturated fat intake $>$ 15.2 grams/day vs. $<$ 11.8 grams/day, OR = 3.3; CI: 1.5-7.1). Early puberty, xenoestrogen exposure, elevated maternal estrogen levels, sedentary lifestyle and dietary phytoestrogen intake were not associated with risk of testicular cancer.^ In conclusion, testicular cancer may be associated with endogenous androgen metabolism although environmental estrogen exposure can not be ruled out. Further research is needed to understand the underlying hormonal mechanisms and possible dietary influences. ^
Resumo:
One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^
Resumo:
Steroid hormones regulate target cell function via quantitative and qualitative changes in RNA and protein synthesis. In the testis, androgens are known to play an important role in the regulation of spermatogenesis. The Sertoli cell (SC), whose function is thought to be supportive to the developing germ cell, has been implicated as an androgen target cell. Although cytoplasmic androgen receptors and chromatin acceptor sites for androgen-receptor complexes have been found in SC, effects on RNA synthesis have not previously been demonstrated. In this study, SC RNA synthetic activity was characterized and the effect of testosterone on SC nuclear transcriptional activity in vitro assessed. SC exhibited two fold increases in RNA and ribonucleotide pool concentrations during sexual maturation. These changes appeared to correlate with a previously observed increase in protein concentration per cell over an age span of 15-60 days. Following incubation with ('3)H-uridine, SC from older animals incorporated more label into RNA than SC from younger animals. Since the relative concentration of cytidine nucleotides was higher in SC from older rats, the age-related increase in tritium incorporation may reflect an associated increase in incorporation of ('3)H-CMP into RNA. Alternatively, the enhanced labeling may be the result of either a change in the base composition of the RNA resulting in a higher proportion of CMP and UMP in the RNA, or compartmentalization of the nucleotide pools. The physiologic consequences of these maturational alterations of nucleotide pools remains to be elucidated. RNA polymerase activities were characterized in intact nuclei obtained from cultured rat SC. (alpha)-Amanitin resistant RNA polymerase I+III activity was identical when measured in low or high ionic strength (0.05 M or 0.25 M ammonium sulfate (AS)) in the presence of MnCl(,2) or MgCl(,2), with a divalent cation optimum of 1.6 mM. RNA polymerase II was most active in 0.25 M AS and 1.6 mM MnCl(,2). The apparent Km of RNA polymerase II for UTP was 0.016 mM in 0.05 M AS and 0.037 mM in 0.25 M AS. The apparent Km values for total polymerase activity was 0.008 mM and 0.036 mM at low and high ionic strenghts, respectively. These data indicate that Sertoli cell RNA polymerase activities have catalytic properties characteristic of eukaryotic polymerase activities in general. In the presence of 21 (mu)M testosterone, RNA polymerase II activity increased two fold at 15 minutes, then declined but was still elevated over control values six hours after androgen addition. Polymerase I+III activity was not greatly affected by testosterone. The stimulation of polymerase II measured at 15 minutes was dose-dependent, with a maximum at 0.53 nM and no further stimulation up to 10('-5) M (ED(,50) = 0.25 nM testosterone), and was androgen specific. The results of preliminary RNA isolation and characterization experiments suggested that the synthesis of several species of RNA was enhanced by testosterone administration. These findings have great potential importance since they represent the first demonstration of a direct effect of androgens on the transcriptional process in the Sertoli cell. Furthermore, the results of these studies constitute further evidence that the Sertoli cell is a target for androgen action in the testis. ^
Resumo:
Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.
Resumo:
BACKGROUND There is an urgent need for preclinical models of prostate cancer; however, clinically relevant patient-derived prostate cancer xenografts (PDXs) are demanding to establish. METHODS Sixty-seven patients who were undergoing palliative transurethral surgery or radical prostatectomy for histologically confirmed, clinically relevant prostate cancer were included in the study. Fresh prostate cancer tissue was identified by frozen analysis in 48 patients. The cancer tissue was transplanted subcutaneously and under the renal capsule of NSG and NOG mice supplemented with human testosterone. All growing PDXs were evaluated by histology and immunohistochemistry. RESULTS Early assessment of the animals at least three months after transplantation included 27/48 (56.3%) eligible PDX cohorts. PDX growth was detected in 10/27 (37%) mouse cohorts. Eight of the ten PDXs were identified as human donor derived lymphomas, including seven Epstein Barr virus (EBV)-positive diffuse large B-cell lymphomas and one EBV-negative peripheral T-cell lymphoma. One sample consisted of benign prostatic tissue, and one sample comprised a benign epithelial cyst. Prostate cancer was not detected in any of the samples. CONCLUSIONS Tumors that arise within the first three months after prostate cancer xenografting may represent patient-derived EBV-positive lymphomas in up to 80% of the early growing PDXs when using triple knockout NSG immunocompromised mice. Therefore, lymphoma should be excluded in prostate cancer xenografts that do not resemble typical prostatic adenocarcinoma. Prostate 9999: XX-XX, 2014. © 2015 Wiley Periodicals, Inc.
Resumo:
Recent studies have shown that women are more sensitive than men to subtle cuteness differences in infant faces. It has been suggested that raised levels in estradiol and progesterone may be responsible for this advantage. We compared young women's sensitivity to computer-manipulated baby faces varying in cuteness. Thirty-six women were tested once during ovulation and once during the luteal phase of their menstrual cycle. In a two alternative forced-choice experiment, participants chose the baby which they thought was cuter (Task 1), younger (Task 2), or the baby that they would prefer to babysit (Task 3). Saliva samples to assess levels of estradiol, progesterone and testosterone were collected at each test session. During ovulation, women were more likely to choose the cuter baby than during the luteal phase, in all three tasks. These results suggest that cuteness discrimination may be driven by cyclic hormonal shifts. However none of the measured hormones were related to increased cuteness sensitivity. We speculate that other hormones than the ones measured here might be responsible for the increased sensitivity to subtle cuteness differences during ovulation.
Resumo:
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Resumo:
This study aimed to investigate the male-to-female morphological and physiological transdifferentiation process in rainbow trout (Oncorhynchus mykiss) exposed to exogenous estrogens. The first objective was to elucidate whether trout develop intersex gonads under exposure to low levels of estrogen. To this end, the gonads of an all-male population of fry exposed chronically (from 60 to 136 days post fertilization--dpf) to several doses (from environmentally relevant 0.01 µg/L to supra-environmental levels: 0.1, 1 and 10 µg/L) of the potent synthetic estrogen ethynylestradiol (EE2) were examined histologically. The morphological evaluations were underpinned by the analysis of gonad steroid (testosterone, estradiol and 11-ketotestosterone) levels and of brain and gonad gene expression, including estrogen-responsive genes and genes involved in sex differentiation in (gonads: cyp19a1a, ER isoforms, vtg, dmrt1, sox9a2; sdY; cyp11b; brain: cyp19a1b, ER isoforms). Intersex gonads were observed from the first concentration used (0.01 µg EE2/L) and sexual inversion could be detected from 0.1 µg EE2/L. This was accompanied by a linear decrease in 11-KT levels, whereas no effect on E2 and T levels was observed. Q-PCR results from the gonads showed downregulation of testicular markers (dmrt1, sox9a2; sdY; cyp11b) with increasing EE2 exposure concentrations, and upregulation of the female vtg gene. No evidence was found for a direct involvement of aromatase in the sex conversion process. The results from this study provide evidence that gonads of male trout respond to estrogen exposure by intersex formation and, with increasing concentration, by morphological and physiological conversion to phenotypic ovaries. However, supra-environmental estrogen concentrations are needed to induce these changes.
Resumo:
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.
Resumo:
The population-based case–control study CECILE investigated the impact of various menopausal hormone therapy (MHT) products on breast cancer (BC) risk in 1,555 postmenopausal women [1]. The case group (n = 739) included incident cases of in situ (!) or invasive BC in postmenopausal women. The control group (n = 816) included women from the general population within predefined quotas by age and socio-economic status (SES). While quotas by age were applied to obtain similar distributions by age among controls and among cases, quotas by SES in control women were applied to reflect the distribution by SES of women in the general population in the study area. Data of participants were obtained by a structured questionnaire during in-person interviews, and from pathology reports if applicable, respectively. Women were divided into current and past MHT user. MHTs were classified in estrogen-only therapy (ET), estrogen combined with progestin therapy (EPT) and tibolone. EPT was subdivided in three subtypes according to the progestogen constituent: natural micronized progesterone, progesterone derivatives, and testosterone derivatives. In comparison to never MHT users, any current or past MHT use (ET, EPT, tibolone) was not associated with an increased BC risk. However, in subanalysis BC risk was significantly increased for current use of EPT for 4 or more years (n = 73 cases and n = 56 controls, adjusted OR 1.55; 95 % CI 1.02–2.36). Within the group of current EPT users for 4 or more years, 14 cases had used estrogens combined with micronized progesterone (n = 17 controls), and 55 a combination with a synthetic progestogen (n = 34 controls), respectively. Compared to never MHT use, current use of EPT containing a synthetic progestogen for 4 or more years was associated with a significantly increased BC risk (adjusted OR 2.07; 95 % CI 1.26–3.39), but EPT containing micronized progesterone was not (adjusted OR 0.79; 95 % CI 0.37–1.71). 73 % of current MHT users started treatment within the first year of onset of menopause. Early EPT (n = 52 cases and n = 38 controls, adjusted OR 1.65; 95 % CI 1.02–2.69), but not early ET, starters had a significantly higher BC risk compared to never MHT users. In contrast, MHT initiation beyond 1 year after menopause was not associated with an increased BC risk. The authors concluded that: (1) ET and EPT containing natural progesterone did not increase BC risk whereas, (2) BC risk was increased in users of tibolone or EPT containing a synthetic progestogen, respectively, and that (3) MHT use early after onset of menopause was associated with an increased BC risk as compared to women who delay MHT beyond 1 or more years.
Resumo:
Diagnosis and therapy of male hypogonadism is still a challenge because of the unspecific clinical signs and symptoms. The clinical presentation of a androgen deficiency is age-related. In the adult men, one can often observe fatigue, decrease in physical capacity, loss of libido and erectile dysfunction. At the physical examination, genitalia have always to be assessed in search of a testes/penis atrophy. Two fasting measurements of total testosterone concentrations by a reliable assay are needed to confirm the diagnosis. By assessing gonadotropines the origin of hypogonadism can be determined (central/secondary or peripheral/primary). Exogenous administration of androgens should be considered in young, sportive, healthy and muscular males. Patients with metabolic syndrome should only be screened for hypogonadism in the presence of suggestive symptoms. Prostate disease, hematocrit higher than 50 %, uncontrolled heart failure and severe obstructive sleep apnea are contraindications of a testosterone replacement therapy. Patients with metabolic-syndrome-associated low testosterone levels should firstly benefit from a lifestyle intervention that can normalize clinical and biochemical hypogonadism. So far, there is no clear evidence for a possible benefit of testosterone therapy in patients with the metabolic syndrome. Similarly, in patients with PADAM (partial androgen deficiency of the aging male) testosterone therapy is not established or recommended.
Resumo:
Recent research suggests that men find portraits of ovulatory women more attractive than photographs of the same women taken during the luteal phase. Only few studies have investigated whether the same is true for women. The ovulatory phase matters to men because women around ovulation are most likely to conceive, and might matter to women because fertile women might pose a reproductive threat. In an online study 160 women were shown face pairs, one of which was assimilated to the shape of a late follicular prototype and the other to a luteal prototype, and were asked to indicate which face they found more attractive. A further 60 women were tested in the laboratory using a similar procedure. In addition to choosing the more attractive face, these participants were asked which woman would be more likely to steal their own date. Because gonadal hormones influence competitive behaviour, we also examined whether oestradiol, testosterone and progesterone levels predict women's choices. The women found neither the late follicular nor the luteal version more attractive. However, naturally cycling women with higher oestradiol levels were more likely to choose the ovulatory woman as the one who would entice their date than women with lower oestradiol levels. These results imply a role of oestradiol when evaluating other women who are competing for reproduction.