694 resultados para Termorregulação escroto-testicular


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND To report the long-term results of adjuvant treatment with one cycle of modified bleomycin, etoposide, and cisplatin (BEP) in patients with clinical stage I (CS I) nonseminomatous germ-cell tumors (NSGCT) at high risk of relapse. PATIENTS AND METHODS In a single-arm, phase II clinical trial, 40 patients with CS I NSGCT with vascular invasion and/or >50% embryonal cell carcinoma in the orchiectomy specimen received one cycle of adjuvant BEP (20 mg/m(2) bleomycin as a continuous infusion over 24 h, 120 mg/m(2) etoposide and 40 mg/m(2) cisplatin each on days 1-3). Primary end point was the relapse rate. RESULTS Median follow-up was 186 months. One patient (2.5%) had a pulmonary relapse 13 months after one BEP and died after three additional cycles of BEP chemotherapy. Three patients (7.5%) presented with a contralateral metachronous testicular tumor, and three (7.5%) developed a secondary malignancy. Three patients (7.5%) reported intermittent tinnitus and one had grade 2 peripheral polyneuropathy (2.5%). CONCLUSIONS Adjuvant chemotherapy with one cycle of modified-BEP is a feasible and safe treatment of patients with CS I NSGCT at high risk of relapse. In these patients, it appears to be an alternative to two cycles of BEP and to have a lower relapse rate than retroperitoneal lymph node dissection. If confirmed by other centers, 1 cycle of adjuvant BEP chemotherapy should become a first-line treatment option for this group of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to investigate the male-to-female morphological and physiological transdifferentiation process in rainbow trout (Oncorhynchus mykiss) exposed to exogenous estrogens. The first objective was to elucidate whether trout develop intersex gonads under exposure to low levels of estrogen. To this end, the gonads of an all-male population of fry exposed chronically (from 60 to 136 days post fertilization--dpf) to several doses (from environmentally relevant 0.01 µg/L to supra-environmental levels: 0.1, 1 and 10 µg/L) of the potent synthetic estrogen ethynylestradiol (EE2) were examined histologically. The morphological evaluations were underpinned by the analysis of gonad steroid (testosterone, estradiol and 11-ketotestosterone) levels and of brain and gonad gene expression, including estrogen-responsive genes and genes involved in sex differentiation in (gonads: cyp19a1a, ER isoforms, vtg, dmrt1, sox9a2; sdY; cyp11b; brain: cyp19a1b, ER isoforms). Intersex gonads were observed from the first concentration used (0.01 µg EE2/L) and sexual inversion could be detected from 0.1 µg EE2/L. This was accompanied by a linear decrease in 11-KT levels, whereas no effect on E2 and T levels was observed. Q-PCR results from the gonads showed downregulation of testicular markers (dmrt1, sox9a2; sdY; cyp11b) with increasing EE2 exposure concentrations, and upregulation of the female vtg gene. No evidence was found for a direct involvement of aromatase in the sex conversion process. The results from this study provide evidence that gonads of male trout respond to estrogen exposure by intersex formation and, with increasing concentration, by morphological and physiological conversion to phenotypic ovaries. However, supra-environmental estrogen concentrations are needed to induce these changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Noninflammatory alopecia is a frequent problem in dogs. Estrogen-induced alopecia is well described in dogs, with estrogen producing testicular tumors and canine female hyperestrogenism. OBJECTIVES To increase awareness that extensive alopecia in dogs can be caused by exposure to estradiol gel used by owners to treat their postmenopausal symptoms. ANIMALS Skin biopsies from five dogs with extensive alopecia were examined. METHODS Owners were asked for a thorough case history, including possible exposure to an estradiol gel. Complete blood work and serum chemistry panel analysis were performed to investigate possible underlying causes. Formalin-fixed skin biopsy samples were obtained from lesional skin and histopathology was performed. RESULTS All owners confirmed the use of a transdermal estradiol gel and close contact with the affected dogs before development of alopecia. Histopathologic examination showed a similar picture in all five dogs. Most hair follicles were predominantly either in kenogen or telogen and hair follicle infundibula showed mild to moderate dilation. Hair regrowth was present in all five dogs after the exposure to the estradiol gel was stopped or minimized. Blood work and serum chemistry panel were within normal limits in all cases. One dog had elevated estradiol concentrations, whereas in another dog estradiol concentrations were within normal limits. CONCLUSION AND CLINICAL IMPORTANCE Alopecia can occur after contact with a transdermal gel used as treatment for postmenopausal symptoms in women. Estradiol gel used by female owners therefore represents a possible cause for noninflammatory alopecia in dogs. Estradiol concentrations are not necessarily elevated in affected dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Administration of gonadotropins or testosterone (T) will maintain qualitatively normal spermatogenesis and fertility in hypophysectomized (APX) rats. However, quantitative maintenance of the spermatogenic process in APX rats treated with T alone or in combination with follicle stimulating hormone (FSH) has not been demonstrated. Studies reported here were conducted to determine whether it would be possible to increase intratesticular testosterone (ITT) levels in APX rats to those found in normal animals by administration of appropriate amounts of testosterone propionate (TP) and if under these conditions spermatogenesis can be maintained quantitatively. Quantitative analysis of spermatogenesis was performed on stages VI and VII of the spermatogenic cycle utilizing criteria of Leblond and Clermont (1952) all cell types were enumerated. In a series of experiments designed to investigate the effects of T on spermatogenesis, TP was administered to 60 day old APX rats twice daily for 30 days in doses ranging from 0.6 to 15 mg/day or from 0.6 to 6.0 mg/day in combination with FSH. The results of this study demonstrate that the efficiency of transformation of type A to type B spermatogonia and the efficacy of the meiotic prophase are related to ITT levels, and that quantitatively normal completion of the reduction division requires normal ITT levels. The ratio of spermatids to spermatocytes in the vehicle-treated APX rats was 1:1.38; in the APX rats treated with 15 mg of TP it was 1:4.0 (the theoretically expected number). This study is probably the first to demonstrate: (1) the pharmacokinetics of TP, (2) the profile and quantity of T-immunoactivity in both serum and testicular tissue of APX and IC rats as well as APX rats treated with TP alone or in combination with FSH, (3) the direct correlation of serum T and ITT levels in treated APX rats (r = 0.9, p < 0.001) as well as in the IC rats (r = 0.9, p < 0.001), (4) the significant increase in the number of Type B spermatogonia, preleptotene and pachytene spermatocytes and round spermatids in TP-treated APX rats, (5) the correlation of the number of round spermatids formed in IC rats to ITT levels (r = 0.9, p < 0.001), and (6) the correlation of the quantitative maintenance of spermatogenesis with ITT levels (r = 0.7, p < 0.001) in the testes of TP-treated APX rats. These results provide direct experimental evidence for the key role of T in the spermatogenic process. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous genes expressed in placenta or testis localize to the X-chromosome. Both tissues undergo specialized X-chromosome inactivation (imprinted paternal inactivation in placenta and MSCI in testicular germ cells). When the X-chromosome is duplicated or improperly inactivated, defects in placentation, growth and spermatogenesis are noted, suggesting tight control of X-chromosome gene dosage is important for reproduction. ^ Esx1 is a mouse homeobox gene on the X-chromosome with expression limited to extraembryonic tissues and testicular germ cells. Here, we examine the effects of increased and decreased Esx1 dosage on placental and testicular development, the role of genetic background on Esx1 function and characterize the human orthologue of Esx1. ^ Previously, by targeted deletion, Esx1 was shown to be an X-chromosome imprinted regulator of placental development and fetal growth. We show C57Bl6-congenic Esx1 mutants display a more severe phenotype with decreased viability and that the 129 genetic background contains dominant modifier genes that enhance Esx1 mutant survival. ^ Varying Esx1 dosage impacts testicular germ cell development. Esx1 hemizygous null mice are fertile, but we show their testes are two-thirds normal size. To examine the effect of increased Esx1 dosage, Esx1 BAC transgenic mice were generated. Increased Esx1 dosage results in dramatic deficits in testicular germ cell development, leading to sterility and testes one-fourth normal size. We show germ cell loss occurs through apoptosis, begins between postnatal day 6 and 10, and that no spermatocytes complete meiosis. Interestingly, increased Esx1 dosage in testes mimics germ cell loss seen in Klinefelter's (XXY) mice and humans and may represent a molecular mechanism for the infertility characteristic of this syndrome. ^ Esx1 dosage impacts reproductive fitness when maternally transmitted. Three transgenic founder females were unable to transmit the transgene to live offspring, but did produce transgenic pups at earlier stages. Additionally, one line of Esx1 BAC transgenic mice demonstrated decreased embryo size and fitness when the transgene is inherited compared to wild type littermates. ^ It is possible that Esx1 plays a role in human disorders of pregnancy, growth and spermatogenesis. Therefore, we cloned and characterized ESX1L (human Esx1), and show it is expressed in human testis and placenta. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin condensation within the nucleus of developing spermatids involves replacement of histones by transition proteins, which are in turn replaced by protamines. The importance of transition proteins in the complex process of spermiogenesis has, to date, been only speculative. This study sought to investigate the extent to which transition proteins are essential or have redundant functions by characterizing sperm produced in mice expressing all combinations of Tnp-null alleles. Results from breeding trials of 8 weeks duration revealed that, on average, wildtype males produced about 14 offspring whereas TP2 and TP1 single-knockout males produced about 8 and 1 offspring, respectively, demonstrating their subfertility. Genotypes with less than two Tnp wildtype alleles, as well as double-knockout mutants, were completely infertile. Sperm from males with impaired fertility had poor progressive motility, heterogeneous chromatin condensation, incompletely processed protamine 2 and head and tail abnormalities. Generally, as the number of Tnp-null alleles increased so did the severity of abnormalities. However, specific morphological abnormalities were associated with the absence of an individual TP. Studies which sought to identify possible root causes for abnormalities in thiol-rich sperm structures revealed no differences in thiol content or sulfhydryl oxidation status within the nucleus but nuclei and tails from single-knockout mutants were severely disrupted following thiol reduction. Binding of fluorescent dyes to DNA was normal in sperm recovered from caput but abnormal in cauda epididymal sperm from TP1 knockouts and infertile double mutants. Injection of cauda epididymal sperm from double knockouts into oocytes produced very few offspring; however, after injection with testicular sperm, the efficiency was no different from wildtype. These results suggest DNA structural alterations or degradation during epididymal transport of sperm resulting in a diminished capacity of the paternal DNA of these sperm to produce offspring. The overall importance of transition proteins for normal chromatin condensation and production of fertile sperm has been demonstrated. Furthermore, identification of specific morphological abnormalities associated with the absence of an individual transition protein provides new evidence that the proteins are not completely redundant and each fulfills some unique function. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulmonary fibrosis (PF) is the result of a variety of environmental and cancer treatment related insults and is characterized by excessive deposition of collagen. Gas exchange in the alveoli is impaired as the normal lung becomes dense and collapsed leading to a loss of lung volume. It is now accepted that lung injury and fibrosis are in part genetically regulated. ^ Bleomycin is a chemotherapeutic agent used for testicular cancer and lymphomas that induces significant pulmonary toxicity. We delivered bleomycin to mice subcutaneously via a miniosmotic pump in order to elicit lung injury (LI) and quantified the %LI morphometrically using video imaging software. We previously identified a quantitative trait loci, Blmpf-1(LOD=17.4), in the Major Histocompatibility Complex (MHC), but the exact genetic components involved have remained unknown. ^ In the current studies, Blmpf-1 was narrowed to an interval spanning 31.9-32.9Mb on Chromosome 17 using MHC Congenic mice. This region includes the MHC Class II and III genes, and is flanked by the TNF-alpha super locus and MHC Class I genes. Knockout mice of MHC Class I genes (B2mko), MHC Class II genes (Cl2ko), and TNF-alpha (TNF-/-) and its receptors (p55-/-, p75-/-, and p55/p75-/-) were treated with bleomycin in order to ascertain the role of these genes in the pathogenesis of lung injury. ^ Cl2ko mice had significantly better survival and %LI when compared to treated background BL/6 (B6, P<.05). In contrast, B2mko showed no differences in survival or %LI compared to B6. This suggests that the MHC Class II locus contains susceptibility genes for bleomycin-induced lung injury. ^ TNF-alpha, a Class III gene, was examined and it was found that TNF-/- and p55-/- mice had higher %LI and lower survival when compared to B6 (P<.05). In contrast, p75-/- mice had significantly reduced %LI when compared to TNF-/-, p55-/-, and B6 mice as well as higher survival (P<.01). These data contradict the current paradigm that TNF-alpha is a profibrotic mediator of lung injury and suggest a novel and distinct role for the p55 and p75 receptors in mediating lung injury. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally occurring genetic variants confer susceptibility to disease in the human population, including in testicular germ cell tumor development. Disease susceptibility loci for testicular germ cell tumors have been identified by genetic mapping in humans and mice. However, the identity of many of the susceptibility genes remains unclear. My study utilized a chromosome substitution strain, the 129.MOLF-Chr 19 (or M19 strain), to identify candidate testicular germ cell tumor susceptibility genes. Males of this strain have a high incidence of germ cell tumors in the testes. By forward genetic approaches, five susceptibility loci were fine-mapped and the genetic interactions were dissected. In addition, I identified three protein-coding genes and one micro-RNA as testicular tumor susceptibility genes by genomic screening. Using reverse genetic approaches, I verified one of the candidates, Splicing factor 1, as a modifier of testicular tumor. Deficiency of SF1 significantly reduces the incidence of testicular tumors in mice. This study highlights the advantage of the 129.MOLF-Chr 19 consomic strain in disease gene identification and validation. It also sets the stage to elucidate the molecular mechanisms of tumorigenesis in the testis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presentan 3 casos de pacientes transplantados en nuestra Institución, dos cardíacos y uno renal que desarrollaron posteriormente tumores urológicos en próstata, riñón y testículo. Se analizan el mecanismo de producción y consideraciones sobre los mismos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tradicionalmente la castración quirúrgica ha sido la práctica más habitual en la producción de cerdo blanco destinado a la industria de productos cárnicos curados. La castración quirúrgica conlleva un empeoramiento de los rendimientos productivos y penaliza el bienestar animal. Como alternativa ha surgido la inmunización de los cerdos contra el factor de liberación de la gonadotropina (GnRH) (Fàbrega et al., 2010). La inmunocastración suprime la función testicular (Zamaratskaia et al., 2008) y reduce la producción de androsterona (Dunshea et al., 2001) y escatol (Matthews et al., 2000) así como la agresividad (Jaros et al., 2005). Por tanto, la inmunocastración puede ser una alternativa a la castración física en situaciones comerciales. Por otro lado, para la obtención de productos curados se precisan canales con más grasa y mayor proporción de partes nobles que para productos frescos, por lo que se utilizan estrategias como aumentar el peso al sacrificio o el cruce con líneas paternas específicas. El objetivo de este estudio fue evaluar el rendimiento productivo y la calidad de la canal de hembras enteras (HE), machos castrados (MC) y machos inmunocastrados (MI) procedentes de genéticas paternas Duroc (DU) y Pietrain (PI) con un peso al sacrificio de 134 kg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the biological roots of aggression have been the source of intense debate, the precise physiological mechanisms responsible for aggression remain poorly understood. In most species, aggression is more common in males than females; thus, gonadal hormones have been a focal point for research in this field. Although gonadal hormones have been shown to influence the expression of aggression, in many cases aggression can continue after castration, indicating that testicular steroids are not completely essential for the expression of aggression. Recently, the mammalian neuropeptide arginine vasopressin (AVP) has been implicated in aggression. AVP plays a particularly important role in social behavior in monogamous mammals, such as prairie voles (Microtus ochrogaster). In turn, the effects of social experiences may be mediated by neuropeptides, including AVP. For example, sexually naïve prairie voles are rarely aggressive. However, 24 h after the onset of mating, males of this species become significantly aggressive toward strangers. Likewise, in adult male prairie voles, central (intracerebroventricular) injections of AVP can significantly increase intermale aggression, suggesting a role for AVP in the expression of postcopulatory aggression in adult male prairie voles. In this paper, we demonstrate that early postnatal exposure to AVP can have long-lasting effects on the tendency to show aggression, producing levels of aggression in sexually naïve, adult male prairie voles that are comparable to those levels observed after mating. Females showed less aggression and were less responsive to exogenous AVP, but the capacity of an AVP V1a receptor antagonist to block female aggression also implicates AVP in the development of female aggression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the POU-homeodomain gene family encode transcriptional regulatory molecules that play important roles in terminal differentiation of many organ systems. Sperm-1 (Sprm-1) is a POU domain factor that is exclusively expressed in the differentiating male germ cell. We show here that the Sprm-1 protein is expressed in the haploid spermatid and that 129/Sv Sprm-1(−/−) mice are subfertile when compared with wild-type or heterozygous littermates yet exhibit normal testicular morphology and produce normal numbers of mobile spermatozoa. Our data suggest that the Sprm-1 protein plays a discrete regulatory function in the haploid spermatid, which is required for the optimal function, but not the terminal differentiation, of the male germ cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microrchidia, or morc, autosomal recessive mutation results in the arrest of spermatogenesis early in prophase I of meiosis. The morc mutation arose spontaneously during the development of a mouse strain transgenic for a tyrosinase cDNA construct. Morc −/− males are infertile and have grossly reduced testicular mass, whereas −/− females are normal, indicating that the Morc gene acts specifically during male gametogenesis. Immunofluorescence to synaptonemal complex antigens demonstrated that −/− male germ cells enter meiosis but fail to progress beyond zygotene or leptotene stage. An apoptosis assay revealed massive numbers of cells undergoing apoptosis in testes of −/− mice. No other abnormal phenotype was observed in mutant animals, with the exception of eye pigmentation caused by transgene expression in the retina. Spermatogenesis is normal in +/− males, despite significant transgene expression in germ cells. Genomic analysis of −/− animals indicates the presence of a deletion adjacent to the transgene. Identification of the gene inactivated by the transgene insertion may define a novel biochemical pathway involved in mammalian germ cell development and meiosis.