930 resultados para Temporomandibular dysfunction (TMD) and articular noises
Resumo:
The aim of this study was to investigate the interconnection between the processes of proliferation, dedifferentiation, and intrinsic redifferentiation (chondrogenic) capacities of human articular chondrocyte (HAC), and to identify markers linking HAC dedifferentiation status with their chondrogenic potential. Cumulative population doublings (PD) of HAC expanded in monolayer culture were determined, and a threshold range of 3.57-4.19 PD was identified as indicative of HAC loss of intrinsic chondrogenic capacity in pellets incubated without added chondrogenic factors. While several specific gene and surface markers defined early HAC dedifferentiation process, no clear correlation with the loss of intrinsic chondrogenic potential could be established. CD90 expression during HAC monolayer culture revealed two subpopulations, with sorted CD90-negative cells showing lower proliferative capacity and higher chondrogenic potential compared to CD90-positive cells. Although these data further validated PD as critical for in vitro chondrogenesis, due to the early shift in expression, CD90 could not be considered for predicting chondrogenic potential of HAC expanded for several weeks. In contrast, an excellent mathematically modeled correlation was established between PD and the decline of HAC expressing the intracellular marker S100, providing a direct link between the number of cell divisions and dedifferentiation/loss of intrinsic chondrogenic capacity. Based on the dynamics of S100-positive HAC during expansion, we propose asymmetric cell division as a potential mechanism of HAC dedifferentiation, and S100 as a marker to assess chondrogenicity of HAC during expansion, of potential value for cell-based cartilage repair treatments.
Resumo:
The purpose was to investigate the in vivo effects of unloading and compression on T1-Gd relaxation times in healthy articular knee cartilage.
Resumo:
Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC) represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC) and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D) as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP) was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.
Resumo:
BACKGROUND: While viral myocarditis and heart failure are recognized and feared complications of seasonal influenza A infection, only limited information is available for 2009 influenza A(H1N1)-induced heart failure. METHODS AND MAIN FINDINGS: This case series summarizes the disease course of four patients with 2009 influenza A(H1N1) infection who were treated at our institution from November 2009 until September 2010. All patients presented with severe cardiac dysfunction (acute heart failure, cardiogenic shock or cardiac arrest due to ventricular fibrillation) as the leading symptom of influenza A(H1N1) infection. Two patients most likely had pre-existent cardiac pathologies, and three required catecholamine therapy to maintain hemodynamic function. Except for one patient who died before influenza A(H1N1) infection had been diagnosed, all patients received antiviral therapy with oseltamivir and supportive critical care. Acute respiratory distress syndrome due to influenza A(H1N1) infection developed in one patient. Heart function normalized in two of the three surviving patients but remained impaired in the other one at hospital discharge. CONCLUSIONS: Influenza A(H1N1) infection may be associated with severe cardiac dysfunction which can even be the leading clinical symptom at presentation. During an influenza pandemic, a thorough history may reveal flu-like symptoms and should indicate testing for H1N1 infection also in critically ill patients with acute heart failure.
Resumo:
Adverse events in utero may predispose to cardiovascular disease in adulthood. The underlying mechanisms are unknown. During preeclampsia, vasculotoxic factors are released into the maternal circulation by the diseased placenta. We speculated that these factors pass the placental barrier and leave a defect in the circulation of the offspring that predisposes to a pathological response later in life. The hypoxia associated with high-altitude exposure is expected to facilitate the detection of this problem.
Resumo:
Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.
Resumo:
Context Treatment of neurogenic lower urinary tract dysfunction (LUTD) is a challenge, because conventional therapies often fail. Sacral neuromodulation (SNM) has become a well-established therapy for refractory non-neurogenic LUTD, but its value in patients with a neurologic cause is unclear. Objective To assess the efficacy and safety of SNM for neurogenic LUTD. Evidence acquisition Studies were identified by electronic search of PubMed, EMBASE, and ScienceDirect (on 15 April 2010) and hand search of reference lists and review articles. SNM articles were included if they reported on efficacy and/or safety of tested and/or permanently implanted patients suffering from neurogenic LUTD. Two reviewers independently selected studies and extracted data. Study estimates were pooled using Bayesian random-effects meta-analysis. Evidence synthesis Of the 26 independent studies (357 patients) included, the evidence level ranged from 2b to 4 according to the Oxford Centre for Evidence-Based Medicine. Half (n = 13) of the included studies reported data on both test phase and permanent SNM; the remaining studies were confined to test phase (n = 4) or permanent SNM (n = 9). The pooled success rate was 68% for the test phase (95% credibility interval [CrI], 50–87) and 92% (95% CrI, 81–98%) for permanent SNM, with a mean follow-up of 26 mo. The pooled adverse event rate was 0% (95% CrI, 0–2%) for the test phase and 24% (95% CrI, 6–48%) for permanent SNM. Conclusions There is evidence indicating that SNM may be effective and safe for the treatment of patients with neurogenic LUTD. However, the number of investigated patients is low with high between-study heterogeneity, and there is a lack of randomised, controlled trials. Thus, well-designed, adequately powered studies are urgently needed before more widespread use of SNM for neurogenic LUTD can be recommended.
Resumo:
Endothelial dysfunction (ED) is frequently present in patients presenting with acute or stable coronary artery disease (CAD), but it is also found in patients presenting with chest pain without angiographic coronary lesions.
Resumo:
Dysfunction of the senses of taste and smell may strongly affect our lives. During the last years reliable techniques for the standardized investigation of the 2 senses have been introduced to clinical routine. These techniques are highly standardized and can be easily used, for example, for quality control before and after surgery. Although there are proven therapeutic approaches to taste or smell loss, by far not all patients can be helped. New ideas need to tested within rigorous double-blind studies. The regenerative capacity within the chemical senses provides a major basis for hopes on therapeutic success.
Resumo:
Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.
Resumo:
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.
Resumo:
Filaggrin loss-of-function mutations resulting in C-terminal protein truncations are strong predisposing factors in human atopic dermatitis (AD). To assess the possibility of similar truncations in canine AD, an exclusion strategy was designed on 16 control and 18 AD dogs of various breeds. Comparative immunofluorescence microscopy was performed with an antibody raised against the canine filaggrin C-terminus and a commercial N-terminal antibody. Concurrent with human AD-like features such as generalized NFKB activation and hyperproliferation, four distinctive filaggrin expression patterns were identified in non-lesional skin. It was found that 10/18 AD dogs exhibited an identical pattern for both antibodies with comparable (category I, 3/18) or reduced (category II, 7/18) expression to that of controls. In contrast, 4/18 dogs displayed aberrant large vesicles revealed by the C-terminal but not the N-terminal antibody (category III), while 4/18 showed a control-like N-terminal expression but lacked the C-terminal protein (category IV). The missing C-terminal filaggrin in category IV strongly points towards loss-of function mutations in 4/18 (22%) of all AD dogs analysed.
Resumo:
Resting heart rate is a promising modifiable cardiovascular risk marker in older adults, but the mechanisms linking heart rate to cardiovascular disease are not fully understood. We aimed to assess the association between resting heart rate and incident heart failure (HF) and cardiovascular mortality, and to examine whether these associations might be attributable to systemic inflammation and endothelial dysfunction.
Resumo:
American College of Cardiology/American Heart Association guidelines for the diagnosis and management of heart failure recommend investigating exacerbating conditions such as thyroid dysfunction, but without specifying the impact of different thyroid-stimulation hormone (TSH) levels. Limited prospective data exist on the association between subclinical thyroid dysfunction and heart failure events.