991 resultados para Temporal logic
Resumo:
The system presented here is based on neurophysiological and electrophysiological data. It computes three types of increasingly integrated temporal and probability contexts, in a bottom-up mode. To each of these contexts corresponds an increasingly specific top-down priming effect on lower processing stages, mostly pattern recognition and discrimination. Contextual learning of time intervals, events' temporal order or sequential dependencies and events' prior probability results from the delivery of large stimuli sequences. This learning gives rise to emergent properties which closely match the experimental data.
Resumo:
Recognition of objects in complex visual scenes is greatly simplified by the ability to segment features belonging to different objects while grouping features belonging to the same object. This feature-binding process can be driven by the local relations between visual contours. The standard method for implementing this process with neural networks uses a temporal code to bind features together. I propose a spatial coding alternative for the dynamic binding of visual contours, and demonstrate the spatial coding method for segmenting an image consisting of three overlapping objects.
Resumo:
We can recognize objects through receiving continuously huge temporal information including redundancy and noise, and can memorize them. This paper proposes a neural network model which extracts pre-recognized patterns from temporally sequential patterns which include redundancy, and memorizes the patterns temporarily. This model consists of an adaptive resonance system and a recurrent time-delay network. The extraction is executed by the matching mechanism of the adaptive resonance system, and the temporal information is processed and stored by the recurrent network. Simple simulations are examined to exemplify the property of extraction.
Resumo:
The recognition of 3-D objects from sequences of their 2-D views is modeled by a family of self-organizing neural architectures, called VIEWNET, that use View Information Encoded With NETworks. VIEWNET incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a supervised incremental learning system that classifies the preprocessed representations into 2-D view categories whose outputs arc combined into 3-D invariant object categories, and a working memory that makes a 3-D object prediction by accumulating evidence from 3-D object category nodes as multiple 2-D views are experienced. The simplest VIEWNET achieves high recognition scores without the need to explicitly code the temporal order of 2-D views in working memory. Working memories are also discussed that save memory resources by implicitly coding temporal order in terms of the relative activity of 2-D view category nodes, rather than as explicit 2-D view transitions. Variants of the VIEWNET architecture may also be used for scene understanding by using a preprocessor and classifier that can determine both What objects are in a scene and Where they are located. The present VIEWNET preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, rotation, and dilation by use of a log-polar transform. The invariant spectra undergo Gaussian coarse coding to further reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the classifier, a supervised learning system based on the fuzzy ARTMAP algorithm. Fuzzy ARTMAP learns 2-D view categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive error. Evidence from sequence of 2-D view categories converges at 3-D object nodes that generate a response invariant under changes of 2-D view. These 3-D object nodes input to a working memory that accumulates evidence over time to improve object recognition. ln the simplest working memory, each occurrence (nonoccurrence) of a 2-D view category increases (decreases) the corresponding node's activity in working memory. The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean image using slow and fast learning. Slow learning at the fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the selected 2-D view category. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of l28x128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view and of up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with those of cells in monkey inferotemporal cortex.
Resumo:
The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory.
Resumo:
This article introduces a quantitative model of early visual system function. The model is formulated to unify analyses of spatial and temporal information processing by the nervous system. Functional constraints of the model suggest mechanisms analogous to photoreceptors, bipolar cells, and retinal ganglion cells, which can be formally represented with first order differential equations. Preliminary numerical simulations and analytical results show that the same formal mechanisms can explain the behavior of both X (linear) and Y (nonlinear) retinal ganglion cell classes by simple changes in the relative width of the receptive field (RF) center and surround mechanisms. Specifically, an increase in the width of the RF center results in a change from X-like to Y-like response, in agreement with anatomical data on the relationship between α- and
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.
Resumo:
We present a neural network that adapts and integrates several preexisting or new modules to categorize events in short term memory (STM), encode temporal order in working memory, evaluate timing and probability context in medium and long term memory. The model shows how processed contextual information modulates event recognition and categorization, focal attention and incentive motivation. The model is based on a compendium of Event Related Potentials (ERPs) and behavioral results either collected by the authors or compiled from the classical ERP literature. Its hallmark is, at the functional level, the interplay of memory registers endowed with widely different dynamical ranges, and at the structural level, the attempt to relate the different modules to known anatomical structures.
Resumo:
A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.
Resumo:
This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.
Resumo:
Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.
Resumo:
The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.
Resumo:
Distribution of soft sediment benthic fauna and the environmental factors affecting them were studied, to investigate changes across spatial and temporal scales. Investigations took place at Lough Hyne Marine Reserve using a range of methods. Data on the sedimentation rates of organic and inorganic matter were collected at monthly intervals for one year at a number of sites around the Lough, by use of vertical midwater-column sediment traps. Sedimentation of these two fractions were not coupled; inorganic matter sedimentation depended on hydrodynamic and weather factors, while the organic matter sedimentation was more complex, being dependent on biological and chemical processes in the water column. The effects of regular hypoxic episodes on benthic fauna due to a natural seasonal thermocline were studied in the deep Western Trough, using camera-equipped remotely-operated vehicle to follow transects, on a three-monthly basis over one year. In late summer, the area below the thermocline of the Western Trough was devoid of visible fauna. Decapod crustaceans were the first taxon to make use of ameliorating oxygen conditions in autumn, by darting below the thermocline depth, most likely to scavenge. This was indicated by tracks that they left on the surface of the Trough floor. Some species, most noticeably Fries’ goby Lesueurigobius friesii, migrated below the thermocline depth when conditions were normoxic and established semi-permanent burrows. Their population encompassed all size classes, indicating that this habitat was not limited to juveniles of this territorial species. Recolonisation by macrofauna and burrowing megafauna was studied during normoxic conditions, from November 2009 to May 2010. Macrofauna displayed a typical post-disturbance pattern of recolonisation with one species, the polychaete Scalibregma inflatum, occurring at high abundance levels in March 2010. In May, this population had become significantly reduced and a more diverse community was established. The abundance of burrowing infauna comprising decapods crabs and Fries’ gobies, was estimated by identifying and counting their distinctive burrow structures. While above the summer thermocline depth, burrow abundance increased in a linear fashion, below the thermocline depth a slight reduction of burrow abundance occurred in May, when oxygen conditions deteriorated again. The majority of the burrows occurring in May were made by Fries’ gobies, which are thought to encounter low oxygen concentrations in their burrows. Reduction in burrow abundance of burrowing shrimps Calocaris macandreae and Callianassa subterranea (based on descriptions of burrow structures from the literature), from March to May, might be related to their reduced activity in hypoxia, leading to loss of structural burrow maintenance. Spatial and temporal changes to macrofaunal assemblage structures were studied seasonally for one year across 5 sites in the Lough and subject to multivariate statistical analysis. Assemblage structures were significantly correlated with organic matter levels in the sediment, the amounts of organic matter settling out of the water column one month before macrofaunal sampling took place as well as current speed and temperature. This study was the first to investigate patterns and processes in the Lough soft sediment ecology across all 3 basins on a temporal and spatial scale. An investigation into the oceanographic aspects of the development, behaviour and break-down of the summer thermocline of Lough Hyne was performed in collaboration with researchers from other Irish institutions.
Resumo:
This study examined the spatial and temporal variability of dung beetle assemblages across a variety of scales e.g. from the between-pad scale (examining the effects of dung size and type) to larger spatial scales encompassing southern Ireland. Dung beetle assemblage structure as sampled by dung pad cohort samples and dung baited pitfall trapping were compared. Generally, the rank order of abundance of dung beetle species was significantly correlated between pitfall catches and cohort pad samples. Across different dung sizes, in both pitfall catches and cohort pad samples, the relative abundance of species was frequently significantly different, but the rank order of abundance of dung beetle was usually significantly correlated. Considerable variations in pitfall catches at temporal scales of a few days appeared to be closely related to weather conditions and rotational grazing. However, despite considerable variation in absolute abundances between consecutive days of sampling, assemblage structure typically remained very similar. The relationship between dung pad size and dung beetle colonisation was investigated. In field experiments in which pads of different sizes (0.25 L, 0.5 L, 1.0 L and 1.5 L) were artificially deposited, there was a positive relationship between pad size and both biomass and number of beetles colonising dung pads and pitfall traps. In addition, with one exception, the field experiments indicated a general positive relationship between dung pad size and biomass density (dung beetle biomass per unit dung volume). A laboratory experiment indicated that pat residence times of A. rufipes were significantly correlated with dung pad size. Investigation of naturally-deposited cow dung pads in the field also indicated that both larval numbers and densities were significantly correlated with dung pad size. These results were discussed in the context of theory related to aggregation and coexistence of species, and resource utilisation by organisms in ephemeral, patchy resources. The colonisation by dung beetles of dung types from native herbivores (sheep, horse and cow) was investigated in field experiments. There were significant differences between the dung types in the chemical parameters measured, and there were significant differences in abundances of dung beetles colonising the dung types. Sheep dung was typically the preferred dung type. Data from these field experiments, and from published literature, indicated that dung beetle species can display dung type preferences, in terms of comparisons of both absolute and relative abundances. In addition, data from laboratory experiments indicate that both Aphodius larval production and pat residence times tended to be higher in those dung types which were preferred by adult Aphodius in the colonisation experiments. Data from dung-baited pitfall trapping (from this and another study) at several sites (up to 180 km distant) and over a number of years (between 1991 and 1996) were used to investigate spatial and temporal variation in dung beetle assemblage structure and composition (Aphodius, Sphaeridium and Geotrupes) across a range of scales in southern Ireland. Species richness levels, species composition and rank order of abundances were very similar between the assemblages. The temporal variability between seasons within any year exceeded temporal variability between years. DCA ordinations indicated that there was a similar level of variability between assemblage structure from the between-field (~1km) to regional (~180 km) spatial scales, and between year (6 years) temporal scales. At the biogeographical spatial scale, analysis of data from the literature indicated that there was considerable variability at this scale, largely due to species turnover.
Resumo:
The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.