951 resultados para Taurine transporter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Stroke or cerebrovascular accident, whose great majority is of ischemic nature, is the third leading cause of mortality and long lasting disability in industrialised countries. Resulting from the loss of blood supply to the brain depriving cerebral tissues of oxygen and glucose, it induces irreversible neuronal damages. Despite the large amount of research carried out into the causes and pathogenic features of cerebral ischemia the progress toward effective treatments has been poor. Apart the clot-busting drug tissue-type plasminogen activator (tPA) as effective therapy for acute stroke (reperfusion by thrombolysis) but limited to a low percentage of patients, there are currently no other approved medical treatments. The need for new therapy strategies is therefore imperative. Neuronal death in cerebral ischemia is among others due to excitotoxic mechanisms very early after stroke onset. One of the main involved molecular pathways leading to excitotoxic cell death is the c-Jun NH2-terminal kinase (JNK) pathway. Several studies have already shown the efficacy of a neuroprotective agent of a new type, a dextrogyre peptide synthesized in the retro inverso form (XG102, formerly D-JNKI1), which is protease-resistant and cell-penetrating and that selectively and strongly blocks the access of JNK to many of its targets. A powerful protection was observed with this compound in several models of ischemia (Borsello et al. 2003;Hirt et al. 2004). This chimeric compound, made up of a 10 amino acid TAT transporter sequence followed by a 20 amino acids JNK binding domain (JBD) sequence from JNK inhibitor protein (JIP) molecule, induced both a major reduction in lesion size and improved functional outcome. Moreover it presents a wide therapeutic window. XG-102 has proved its powerful efficacy in an occlusion model of middle cerebral artery in mice with intracérebroventricular (i.c.v.) injection but in order to be able to consider the development of this drug for human ischemic stroke it was therefore necessary to determine the feasibility of its systemic administration. The studies being the subject of this thesis made it possible to show a successful neuroprotection with XG-102 administered systemically after transient mouse middle cerebral artery occlusion (MCAo). Moreover our data. provided information about the feasibility to combine XG-102 with tPA without detrimental action on cell survival. By combining the benefits from a reperfusion treatment with the effects of a neuroprotective compound, it would represent the advantage of bringing better chances to protect the cerebral tissue. Résumé L'attaque cérébrale ou accident vasculaire cérébral, dont la grande majorité est de nature ischémique, constitue la troisième cause de mortalité et d'infirmité dans les pays industrialisés. Résultant de la perte d'approvisionnement de sang au cerveau privant les tissus cérébraux d'oxygène et de glucose, elle induit des dommages neuronaux irréversibles. En dépit du nombre élevé de recherches effectuées pour caractériser les mécanismes pathogènes de l'ischémie. cérébrale, les progrès vers des traitements efficaces restent pauvres. Excepté l'activateur tissulaire du plasminogène (tPA) dont le rôle est de désagréger les caillots sanguins et employé comme thérapie efficace contre l'attaque cérébrale aiguë (reperfusion par thrombolyse) mais limité à un faible pourcentage de patients, il n'y a actuellement aucun autre traitement médical approuvé. Le besoin de nouvelles stratégies thérapeutiques est par conséquent impératif. La mort neuronale dans l'ischémie cérébrale est entre autres due à des mécanismes excitotoxiques survenant rapidement après le début de l'attaque cérébrale. Une des principales voies moléculaires impliquée conduisant à la mort excitotoxique des cellules est la voie de la c-Jun NH2terminal kinase (JNK). Plusieurs études ont déjà montré l'efficacité d'un agent neuroprotecteur d'un nouveau type, un peptide dextrogyre synthétisé sous la forme retro inverso (XG-102, précédemment D-JNKI1) résistant aux protéases, capable de pénétrer dans les cellules et de bloquer sélectivement et fortement l'accès de JNK à plusieurs de ses cibles. Une puissante protection a été observée avec ce composé dans plusieurs modèles d'ischémie (Borsello et al. 2003;Hirt et al. 2004). Ce composé chimérique, construit à partir d'une séquence TAT de 10 acides aminés suivie par une séquence de 20 acides aminés d'un domaine liant JNK (JBD) issu de la molécule JNK protéine inhibitrice. (JIP), induit à la fois une réduction importante de la taille de lésion et un comportement fonctionnel amélioré. De plus il présente une fenêtre thérapeutique étendue. XG-102 a prouvé sa puissante efficacité dans un modèle d'occlusion de l'artère cérébrale moyenne chez la souris avec injection intracerebroventriculaire (i.c.v.) mais afin de pouvoir envisager le développement de ce composé pour l'attaque cérébrale chez l'homme, il était donc nécessaire de déterminer la faisabilité de son administration systémique. Les études faisant l'objet de cette thèse ont permis de montrer une neuroprotection importante avec XG-102 administré de façon systémique après l'occlusion transitoire de l'artère cérébrale moyenne chez la souris (MCAo). De plus nos données ont fourni des informations quant à la faisabilité de combiner XG-102 et tPA, démontrant une protection efficace par XG-102 malgré l'action nuisible du tPA sur la survie des cellules. En combinant les bénéfices de la reperfusion avec les effets d'un composé neurooprotecteur, cela représenterait l'avantage d'apporter des meilleures chances de protéger le tissu cérébral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystinuria is a common inherited amino-aciduria resulting in abnormal urinary excretion of cystine and the dibasic aminoacids, lysine, arginine and ornithine. Formation of cystine kidney stones, recurrent infections and subsequent renal failure are the main complications of the disease. Recently, the gene SLC3A1 and SLC7A9, encoding the two subunits rBAT et b0,+AT of the proximal renal transporter complex, have been identified. In this article, we report the medical history of a 30-year-old patient and discuss the recent molecular progress, the clinical evolution, and the medical treatment of the cystinuria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P-glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualization. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after the latest dose, were measured in 59 patients receiving Glivec at diverse regimens, using a validated HPLC-UV method developed for this study. The results were analyzed by non-linear mixed effect modeling (NONMEM). A one-compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. At present, only the MDR1 polymorphism has been assessed and seems to affect the pharmacokinetic parameters of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40 %) and distribution volume (71 %). Together with intra-patient variability (34 %), this translates into an 8-fold width of the 90 %-prediction interval of plasma concentrations expected under a fixed dosing regimen. This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring program for imatinib. It may help to individualize the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Principal mechanisms of resistance to azole antifungals include the upregulation of multidrug transporters and the modification of the target enzyme, a cytochrome P450 (Erg11) involved in the 14alpha-demethylation of ergosterol. These mechanisms are often combined in azole-resistant Candida albicans isolates recovered from patients. However, the precise contributions of individual mechanisms to C. albicans resistance to specific azoles have been difficult to establish because of the technical difficulties in the genetic manipulation of this diploid species. Recent advances have made genetic manipulations easier, and we therefore undertook the genetic dissection of resistance mechanisms in an azole-resistant clinical isolate. This isolate (DSY296) upregulates the multidrug transporter genes CDR1 and CDR2 and has acquired a G464S substitution in both ERG11 alleles. In DSY296, inactivation of TAC1, a transcription factor containing a gain-of-function mutation, followed by sequential replacement of ERG11 mutant alleles with wild-type alleles, restored azole susceptibility to the levels measured for a parent azole-susceptible isolate (DSY294). These sequential genetic manipulations not only demonstrated that these two resistance mechanisms were those responsible for the development of resistance in DSY296 but also indicated that the quantitative level of resistance as measured in vitro by MIC determinations was a function of the number of genetic resistance mechanisms operating in any strain. The engineered strains were also tested for their responses to fluconazole treatment in a novel 3-day model of invasive C. albicans infection of mice. Fifty percent effective doses (ED(50)s) of fluconazole were highest for DSY296 and decreased proportionally with the sequential removal of each resistance mechanism. However, while the fold differences in ED(50) were proportional to the fold differences in MICs, their magnitude was lower than that measured in vitro and depended on the specific resistance mechanism operating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In pancreatic beta cells, cyclic AMP-dependent protein kinase regulates many cellular processes including the potentiation of insulin secretion. The substrates for this kinase, however, have not been biochemically characterized. Here we demonstrate that the glucose transporter GLUT2 is rapidly phosphorylated by protein kinase A following activation of adenylyl cyclase by forskolin or the incretin hormone glucagon-like peptide-1. We show that serines 489 and 501/503 and threonine 510 in the carboxyl-terminal tail of the transporter are the in vitro and in vivo sites of phosphorylation. Stimulation of GLUT2 phosphorylation in beta cells reduces the initial rate of 3-O-methyl glucose uptake by approximately 48% but does not change the Michaelis constant. Similar differences in transport kinetics are observed when comparing the transport activity of GLUT2 mutants stably expressed in insulinoma cell lines and containing glutamates or alanines at the phosphorylation sites. These data indicate that phosphorylation of GLUT2 carboxyl-terminal tail modifies the rate of transport. This lends further support for an important role of the transporter cytoplasmic tail in the modulation of catalytic activity. Finally, because activation of protein kinase A stimulates glucose-induced insulin secretion, we discuss the possible involvement of GLUT2 phosphorylation in the amplification of the glucose signaling process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike the adjustable gastric banding procedure (AGB), Roux-en-Y gastric bypass surgery (RYGBP) in humans has an intriguing effect: a rapid and substantial control of type 2 diabetes mellitus (T2DM). We performed gastric lap-band (GLB) and entero-gastro anastomosis (EGA) procedures in C57Bl6 mice that were fed a high-fat diet. The EGA procedure specifically reduced food intake and increased insulin sensitivity as measured by endogenous glucose production. Intestinal gluconeogenesis increased after the EGA procedure, but not after gastric banding. All EGA effects were abolished in GLUT-2 knockout mice and in mice with portal vein denervation. We thus provide mechanistic evidence that the beneficial effects of the EGA procedure on food intake and glucose homeostasis involve intestinal gluconeogenesis and its detection via a GLUT-2 and hepatoportal sensor pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of oral targeted therapies are tyrosine kinase inhibitors (TKIs). Oral administration generates a complex step in the pharmacokinetics (PK) of these drugs. Inter-individual PK variability is often large and variability observed in response is influenced not only by the genetic heterogeneity of drug targets, but also by the pharmacogenetic background of the patient (e.g. cytochome P450 and ABC transporter polymorphisms), patient characteristics such as adherence to treatment and environmental factors (drug-drug interactions). Retrospective studies have shown that targeted drug exposure, reflected in the area under the plasma concentration-time curve (AUC) correlates with treatment response (efficacy/toxicity) in various cancers. Nevertheless levels of evidence for therapeutic drug monitoring (TDM) are however heterogeneous among these agents and TDM is still uncommon for the majority of them. Evidence for imatinib currently exists, others are emerging for compounds including nilotinib, dasatinib, erlotinib, sunitinib, sorafenib and mammalian target of rapamycin (mTOR) inhibitors. Applications for TDM during oral targeted therapies may best be reserved for particular situations including lack of therapeutic response, severe or unexpected toxicities, anticipated drug-drug interactions and/or concerns over adherence treatment. Interpatient PK variability observed with monoclonal antibodies (mAbs) is comparable or slightly lower to that observed with TKIs. There are still few data with these agents in favour of TDM approaches, even if data showed encouraging results with rituximab, cetuximab and bevacizumab. At this time, TDM of mAbs is not yet supported by scientific evidence. Considerable effort should be made for targeted therapies to better define concentration-effect relationships and to perform comparative randomised trials of classic dosing versus pharmacokinetically-guided adaptive dosing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY Heavy metal presence in the environment is a serious concern since some of them can be toxic to plants, animals and humans once accumulated along the food chain. Cadmium (Cd) is one of the most toxic heavy metal. It is naturally present in soils at various levels and its concentration can be increased by human activities. Several plants however have naturally developed strategies allowing them to grow on heavy metal enriched soils. One of them consists in the accumulation and sequestration of heavy metals in the above-ground biomass. Some plants present in addition an extreme strategy by which they accumulate a limited number of heavy metals in their shoots in amounts 100 times superior to those expected for a non-accumulating plant in the same conditions. Understanding the genetic basis of the hyperaccumulation trait - particularly for Cd - remains an important challenge which may lead to biotechnological applications in the soil phytoremediation. In this thesis, Thlaspi caerulescens J. & C. Presl (Brassicaceae) was used as a model plant to study the Cd hyperaccumulation trait, owing to its physiological and genetic characteristics. Twenty-four wild populations were sampled in different regions of Switzerland. They were characterized for environmental and soil parameters as well as intrinsic characteristics of plants (i.e. metal concentrations in shoots). They were as well genetically characterized by AFLPs, plastid DNA polymorphism and genes markers (CAPS and microsatellites) mainly developed in this thesis. Some of the investigated genes were putatively linked to the Cd hyperaccumulation trait. Since the study of the Cd hyperaccumulation in the field is important as it allows the identification of patterns of selection, the present work offered a methodology to define the Cd hyperaccumulation capacity of populations from different habitats permitting thus their comparison in the field. We showed that Cd, Zn, Fe and Cu accumulations were linked and that populations with higher Cd hyperaccumulation capacity had higher shoot and reproductive fitness. Using our genetic data, statistical methods (Beaumont & Nichols's procedure, partial Mantel tests) were applied to identify genomic signatures of natural selection related to the Cd hyperaccumulation capacity. A significant genetic difference between populations related to their Cd hyperaccumulation capacity was revealed based on somè specific markers (AFLP and candidate genes). Polymorphism at the gene encoding IRTl (Iron-transporter also participating to the transport of Zn) was suggested as explaining part of the variation in Cd hyperaccumulation capacity of populations supporting previous physiological investigations. RÉSUMÉ La présence de métaux lourds dans l'environnement est un phénomène préoccupant. En effet, certains métaux lourds - comme le cadmium (Cd) -sont toxiques pour les plantes, les animaux et enfin, accumulés le long de la chaîne alimentaire, pour les hommes. Le Cd est naturellement présent dans le sol et sa concentration peut être accrue par différentes activités humaines. Certaines plantes ont cependant développé des stratégies leur permettant de pousser sur des sols contaminés en métaux lourds. Parmi elles, certaines accumulent et séquestrent les métaux lourds dans leurs parties aériennes. D`autres présentent une stratégie encore plus extrême. Elles accumulent un nombre limité de métaux lourds en quantités 100 fois supérieures à celles attendues pour des espèces non-accumulatrices sous de mêmes conditions. La compréhension des bases génétiques de l'hyperaccumulation -particulièrement celle du Cd - représente un défi important avec des applications concrètes en biotechnologies, tout particulièrement dans le but appliqué de la phytoremediation des sols contaminés. Dans cette thèse, Thlaspi caerulescens J. & C. Presl (Brassicaceae) a été utilisé comme modèle pour l'étude de l'hyperaccumulation du Cd de par ses caractéristiques physiologiques et génétiques. Vingt-quatre populations naturelles ont été échantillonnées en Suisse et pour chacune d'elles les paramètres environnementaux, pédologique et les caractéristiques intrinsèques aux plantes (concentrations en métaux lourds) ont été déterminés. Les populations ont été caractérisées génétiquement par des AFLP, des marqueurs chloroplastiques et des marqueurs de gènes spécifiques, particulièrement ceux potentiellement liés à l'hyperaccumulation du Cd (CAPS et microsatellites). La plupart ont été développés au cours de cette thèse. L'étude de l'hyperaccumulation du Cd en conditions naturelles est importante car elle permet d'identifier la marque, éventuelle de sélection naturelle. Ce travail offre ainsi une méthodologie pour définir et comparer la capacité des populations à hyperaccumuler le Cd dans différents habitats. Nous avons montré que les accumulations du Cd, Zn, Fe et Cu sont liées et que les populations ayant une grande capacité d'hyperaccumuler le Cd ont également une meilleure fitness végétative et reproductive. Des méthodes statistiques (l'approche de Beaumont & Nichols, tests de Martel partiels) ont été utilisées sur les données génétiques pour identifier la signature génomique de la sélection naturelle liée à la capacité d'hyperaccumuler le Cd. Une différenciation génétique des populations liée à leur capacité d'hyperaccumuler le Cd a été mise en évidence sur certains marqueurs spécifiques. En accord avec les études physiologiques connues, le polymorphisme au gène codant IRT1 (un transporteur de Fe impliqué dans le transport du Zn) pourrait expliquer une partie de la variance de la capacité des populations à hyperaccumuler le Cd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastro-intestinal stromal tumour (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occur in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after latest dose, were measured in 59 patients receiving Glivec® at diverse regimens, using a validated chromatographic method (HPLC-UV) developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one- compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T appears to affect the disposition of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen ! This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help to individualise the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The signaling pathway that regulates glucose-stimulated insulin secretion depends on glucose metabolism, which is itself controlled by glucokinase. In a recent issue of Cell, show that altering N-glycosylation of the GLUT2 glucose transporter prevents its anchoring and retention at the cell surface; this impairs glucose uptake and insulin secretion.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was long thought that most of brain creatine was of peripheral origin. However, recentworks have demonstrated that creatine crosses blood-brain barrier only with poor efficiency, and thatCNS must ensure parts of its creatine needs by its own creatine synthesis pathway, thank to the brainexpression of AGAT and GAMT (creatine synthesis) and SLC6A8 (creatine transporter). This newunderstanding of creatine metabolism and transport in CNS allows a better comprehension of creatinedeficiency syndromes, which are due to deficiencies in AGAT, GAMT and SLC6A8 and mainly affectthe brain of patients who show severe neurodevelopmental delay and present neurological symptomsin early infancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

JIP-1 is a cytoplasmic inhibitor of the c-Jun amino-terminal kinase activated pathway recently cloned from a mouse brain cDNA library. We report herein the expression cloning of a rat cDNA encoding a JIP-1-related nuclear protein from a pancreatic beta-cell cDNA library that we named IB1 for Islet-Brain 1. IB1 was isolated by its ability to bind to GTII, a cis-regulatory element of the GLUT2 promoter. The IB1 cDNA encodes a 714-amino acid protein, which differs from JIP-1 by the insertion of 47 amino acids in the carboxyl-terminal part of the protein. The remaining 667 amino acids are 97% identical to JIP-1. The 47-amino acid insertion contains a truncated phosphotyrosine interaction domain and a putative helix-loop-helix motif. Recombinant IB1 (amino acids 1-714 and 280-714) was shown to bind in vitro to GTII. Functionally IB1 transactivated the GLUT2 gene. IB1 was localized within the cytoplasm and the nucleus of insulin-secreting cells or COS-7 cells transfected with an expression vector encoding IB1. Using a heterologous GAL4 system, we localized an activation domain of IB1 within the first 280 amino acids of the protein. These data demonstrate that IB1 is a DNA-binding protein related to JIP-1, which is highly expressed in pancreatic beta-cells where it functions as a transactivator of the GLUT2 gene.