785 resultados para Task Clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A descoberta e a análise de conglomerados textuais são processos muito importantes para a estruturação, organização e a recuperação de informações, assim como para a descoberta de conhecimento. Isto porque o ser humano coleta e armazena uma quantidade muito grande de dados textuais, que necessitam ser vasculhados, estudados, conhecidos e organizados de forma a fornecerem informações que lhe dêem o conhecimento para a execução de uma tarefa que exija a tomada de uma decisão. É justamente nesse ponto que os processos de descoberta e de análise de conglomerados (clustering) se insere, pois eles auxiliam na exploração e análise dos dados, permitindo conhecer melhor seu conteúdo e inter-relações. No entanto, esse processo, por ser aplicado em textos, está sujeito a sofrer interferências decorrentes de problemas da própria linguagem e do vocabulário utilizado nos mesmos, tais como erros ortográficos, sinonímia, homonímia, variações morfológicas e similares. Esta Tese apresenta uma solução para minimizar esses problemas, que consiste na utilização de “conceitos” (estruturas capazes de representar objetos e idéias presentes nos textos) na modelagem do conteúdo dos documentos. Para tanto, são apresentados os conceitos e as áreas relacionadas com o tema, os trabalhos correlatos (revisão bibliográfica), a metodologia proposta e alguns experimentos que permitem desenvolver determinados argumentos e comprovar algumas hipóteses sobre a proposta. As conclusões principais desta Tese indicam que a técnica de conceitos possui diversas vantagens, dentre elas a utilização de uma quantidade muito menor, porém mais representativa, de descritores para os documentos, o que torna o tempo e a complexidade do seu processamento muito menor, permitindo que uma quantidade muito maior deles seja analisada. Outra vantagem está no fato de o poder de expressão de conceitos permitir que os usuários analisem os aglomerados resultantes muito mais facilmente e compreendam melhor seu conteúdo e forma. Além do método e da metodologia proposta, esta Tese possui diversas contribuições, entre elas vários trabalhos e artigos desenvolvidos em parceria com outros pesquisadores e colegas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a new clustering method that groups up points of a data set in classes. The method is based in a algorithm to link auxiliary clusters that are obtained using traditional vector quantization techniques. It is described some approaches during the development of the work that are based in measures of distances or dissimilarities (divergence) between the auxiliary clusters. This new method uses only two a priori information, the number of auxiliary clusters Na and a threshold distance dt that will be used to decide about the linkage or not of the auxiliary clusters. The number os classes could be automatically found by the method, that do it based in the chosen threshold distance dt, or it is given as additional information to help in the choice of the correct threshold. Some analysis are made and the results are compared with traditional clustering methods. In this work different dissimilarities metrics are analyzed and a new one is proposed based on the concept of negentropy. Besides grouping points of a set in classes, it is proposed a method to statistical modeling the classes aiming to obtain a expression to the probability of a point to belong to one of the classes. Experiments with several values of Na e dt are made in tests sets and the results are analyzed aiming to study the robustness of the method and to consider heuristics to the choice of the correct threshold. During this work it is explored the aspects of information theory applied to the calculation of the divergences. It will be explored specifically the different measures of information and divergence using the Rényi entropy. The results using the different metrics are compared and commented. The work also has appendix where are exposed real applications using the proposed method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a collaborative system for marking dangerous points in the transport routes and generation of alerts to drivers. It consisted of a proximity warning system for a danger point that is fed by the driver via a mobile device equipped with GPS. The system will consolidate data provided by several different drivers and generate a set of points common to be used in the warning system. Although the application is designed to protect drivers, the data generated by it can serve as inputs for the responsible to improve signage and recovery of public roads

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine whether or not blind children perseverate during a modified Piagetian A-not-B reaching task, with conditions that employ luminous AB targets and acoustic AB targets. Ten congenitally blind children, ages 1-4 years, with residual vision for light, took part in this study. Behavioral and kinematic data were computed for participants' reaches, performed in six A trials and in two B trials, in both stimulus conditions. All of the children perseverated in the luminous condition, and none of them perseverated in the condition using acoustic targets. The children tilted their heads in the direction of the target as they reached towards it. However, this coupling action (head-reaching) occurred predominantly in the A trials in the acoustic condition. In the luminous condition, in contrast to the acoustic condition, the children took longer times to initiate the reaching movement. Also, in the luminous condition, the children explored the target surroundings, unlike the acoustic condition, in which they reached straight ahead. For these blind children, sound was more relevant to reaching than was the luminous stimulus. The luminous input caused perseveration in congenitally blind children in a similar way that has been reported in the literature for typically-developing, sighted infants, ages 8-12 months, performing A-not-B tasks with visual inputs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep) is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR) as a Portuguese-language version. The objectives of the present study were: i) to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii) to examine phoneme (substitution, omission and addition) and order (migration) errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525) = 180.47; P < 0.0001]. The performance was age-related [F(4,175) = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519) = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16) = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48) = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.